Skip to main content

25.07.2018 | Theoretical Advances

Automatic computing of number of clusters for color image segmentation employing fuzzy c-means by extracting chromaticity features of colors

verfasst von: Farid García-Lamont, Jair Cervantes, Asdrúbal López-Chau, Arturo Yee-Rendón

Erschienen in: Pattern Analysis and Applications

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we introduce a method for color image segmentation by computing automatically the number of clusters the data, pixels, are divided into using fuzzy c-means. In several works the number of clusters is defined by the user. In other ones the number of clusters is computed by obtaining the number of dominant colors, which is determined with unsupervised neural networks (NN) trained with the image’s colors; the number of dominant colors is defined by the number of the most activated neurons. The drawbacks with this approach are as follows: (1) The NN must be trained every time a new image is given and (2) despite employing different color spaces, the intensity data of colors are used, so the undesired effects of non-uniform illumination may affect computing the number of dominant colors. Our proposal consists in processing the images with an unsupervised NN trained previously with chromaticity samples of different colors; the number of the neurons with the highest activation occurrences defines the number of clusters the image is segmented. By training the NN with chromatic data of colors it can be employed to process any image without training it again, and our approach is, to some extent, robust to non-uniform illumination. We perform experiments with the images of the Berkeley segmentation database, using competitive NN and self-organizing maps; we compute and compare the quantitative evaluation of the segmented images obtained with related works using the probabilistic random index and variation of information metrics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ghoneim DM (2011) Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions. Theor Biol Med Model 8:25 Ghoneim DM (2011) Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions. Theor Biol Med Model 8:25
3.
Zurück zum Zitat Gökmen V, Sügüt I (2007) A non-contact computer vision based analysis of color in foods. Int J Food Eng 3(5):article 5 Gökmen V, Sügüt I (2007) A non-contact computer vision based analysis of color in foods. Int J Food Eng 3(5):article 5
4.
Zurück zum Zitat Lopez JJ, Cobos M, Aguilera E (2011) Computer-based detection and classification of flaws in citrus fruits. Neural Comput Appl 20(7):975–981 Lopez JJ, Cobos M, Aguilera E (2011) Computer-based detection and classification of flaws in citrus fruits. Neural Comput Appl 20(7):975–981
5.
Zurück zum Zitat Lepistö L, Kuntuu I, Visa A (2005) Rock image classification using color features in Gabor space. J Electron Imaging 14(4):1–3 Lepistö L, Kuntuu I, Visa A (2005) Rock image classification using color features in Gabor space. J Electron Imaging 14(4):1–3
6.
Zurück zum Zitat Wang F, Man L, Wang B, Xiao Y, Pan W, Lu X (2008) Fuzzy-based algorithm for color recognition of license plates. Pattern Recognit Lett 29(7):1007–1020 Wang F, Man L, Wang B, Xiao Y, Pan W, Lu X (2008) Fuzzy-based algorithm for color recognition of license plates. Pattern Recognit Lett 29(7):1007–1020
7.
Zurück zum Zitat Rotaru C, Graf T, Zhang J (2008) Color image segmentation in HSI space for automotive applications. J Real-Time Image Process 3(4):311–322 Rotaru C, Graf T, Zhang J (2008) Color image segmentation in HSI space for automotive applications. J Real-Time Image Process 3(4):311–322
8.
Zurück zum Zitat Bianconi F, Fernández A, González E, Saetta SA (2013) Performance analysis of colour descriptors for parquet sorting. Expert Syst Appl 40(5):1636–1644 Bianconi F, Fernández A, González E, Saetta SA (2013) Performance analysis of colour descriptors for parquet sorting. Expert Syst Appl 40(5):1636–1644
9.
Zurück zum Zitat Cano Marchal P, Martinez Gila D, Gamez Garcia J, Gomez Ortega J (2013) Expert system based on computer vision estimate the content of impurities in olive oil samples. J Food Eng 119(2):220–228 Cano Marchal P, Martinez Gila D, Gamez Garcia J, Gomez Ortega J (2013) Expert system based on computer vision estimate the content of impurities in olive oil samples. J Food Eng 119(2):220–228
10.
Zurück zum Zitat Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280 Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280
11.
Zurück zum Zitat Wang L, Dong M (2012) Multi-level low-rank approximation-based spectral clustering for image segmentation. Pattern Recognit. Lett 33(16):2206–2215 Wang L, Dong M (2012) Multi-level low-rank approximation-based spectral clustering for image segmentation. Pattern Recognit. Lett 33(16):2206–2215
12.
Zurück zum Zitat Mújica-Vargas D, Gallegos-Funes FJ, Rosales-Silva AJ (2013) A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recognit Lett 34(4):400–413 Mújica-Vargas D, Gallegos-Funes FJ, Rosales-Silva AJ (2013) A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recognit Lett 34(4):400–413
13.
Zurück zum Zitat Nadernejad E, Sharifzadeh S (2013) A new method for image segmentation based on fuzzy c-means algorithm on pixonal images formed by bilateral filtering. Signal Image Video Process 7(5):855–863 Nadernejad E, Sharifzadeh S (2013) A new method for image segmentation based on fuzzy c-means algorithm on pixonal images formed by bilateral filtering. Signal Image Video Process 7(5):855–863
14.
Zurück zum Zitat Guo Y, Sengur A (2013) A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst Signal Process 32(4):1699–1723MathSciNet Guo Y, Sengur A (2013) A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst Signal Process 32(4):1699–1723MathSciNet
15.
Zurück zum Zitat Kim JY (2014) Segmentation of lip region in color images by fuzzy clustering. Int J Control Autom Syst 12(3):652–661 Kim JY (2014) Segmentation of lip region in color images by fuzzy clustering. Int J Control Autom Syst 12(3):652–661
16.
Zurück zum Zitat Ong S, Yeo N, Lee K, Venkatesh Y, Cao D (2002) Segmentation of color images using a two-stage self-organizing network. Image Vis Comput 20(4):279–289 Ong S, Yeo N, Lee K, Venkatesh Y, Cao D (2002) Segmentation of color images using a two-stage self-organizing network. Image Vis Comput 20(4):279–289
17.
Zurück zum Zitat Araujo A, Costa D (2009) Local adaptive receptive field self-organizing map for image color segmentation. Image Vis Comput 27(9):1229–1239MathSciNet Araujo A, Costa D (2009) Local adaptive receptive field self-organizing map for image color segmentation. Image Vis Comput 27(9):1229–1239MathSciNet
18.
Zurück zum Zitat Stephanakis IM, Anastassopoulos GC, Iliadis LS (2010) Color segmentation using self-organizing feature maps (SOFMs) defined upon color and spatial image space. In: Artificial neural networks—ICANN 2010, LNCS 6352, Part I, pp 500–510 Stephanakis IM, Anastassopoulos GC, Iliadis LS (2010) Color segmentation using self-organizing feature maps (SOFMs) defined upon color and spatial image space. In: Artificial neural networks—ICANN 2010, LNCS 6352, Part I, pp 500–510
19.
Zurück zum Zitat Halder A, Dalmiya S, Sadhu T (2014) Color image segmentation using semi-supervised self-organization feature map. Adv Signal Process Intell Recognit Syst 264:591–598 Halder A, Dalmiya S, Sadhu T (2014) Color image segmentation using semi-supervised self-organization feature map. Adv Signal Process Intell Recognit Syst 264:591–598
20.
Zurück zum Zitat Ilea DE, Whelan PF (2008) CTex—an adaptive unsupervised segmentation algorithm based on color-texture coherence. IEEE Trans Image Process 17(10):1926–1939MathSciNetMATH Ilea DE, Whelan PF (2008) CTex—an adaptive unsupervised segmentation algorithm based on color-texture coherence. IEEE Trans Image Process 17(10):1926–1939MathSciNetMATH
21.
Zurück zum Zitat Khan A, Jaffar MA (2015) Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl Soft Comput 32:300–310 Khan A, Jaffar MA (2015) Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl Soft Comput 32:300–310
22.
Zurück zum Zitat Khan A, Jaffar MA, Choi TA (2013) SOM and fuzzy based color image segmentation. Multimed Tools Appl 64(2):331–344 Khan A, Jaffar MA, Choi TA (2013) SOM and fuzzy based color image segmentation. Multimed Tools Appl 64(2):331–344
23.
Zurück zum Zitat Khan A, Ullah J, Jaffar MA, Choi TA (2014) Color image segmentation: a novel spatial fuzzy genetic algorithm. Signal Image Video Process 8(7):1233–1243 Khan A, Ullah J, Jaffar MA, Choi TA (2014) Color image segmentation: a novel spatial fuzzy genetic algorithm. Signal Image Video Process 8(7):1233–1243
24.
Zurück zum Zitat Huang R, Sang N, Luo D, Tang Q (2011) Image segmentation via coherent clustering in L*a*b* color space. Pattern Recognit Lett 32(7):891–902 Huang R, Sang N, Luo D, Tang Q (2011) Image segmentation via coherent clustering in L*a*b* color space. Pattern Recognit Lett 32(7):891–902
25.
Zurück zum Zitat Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River
26.
Zurück zum Zitat Ito S, Yoshioka M, Omatu S, Kita K, Kugo K (2006) An image segmentation method using histograms and the human characteristics of HSI color space for a scene image. Artif Life Robot 10(1):6–10 Ito S, Yoshioka M, Omatu S, Kita K, Kugo K (2006) An image segmentation method using histograms and the human characteristics of HSI color space for a scene image. Artif Life Robot 10(1):6–10
27.
Zurück zum Zitat Liu Z, Song YQ, Chen JM, Xie CH, Zhu F (2012) Color image segmentation using nonparametric mixture models with multivariate orthogonal polynomials. Neural Comput Appl 21(4):801–811 Liu Z, Song YQ, Chen JM, Xie CH, Zhu F (2012) Color image segmentation using nonparametric mixture models with multivariate orthogonal polynomials. Neural Comput Appl 21(4):801–811
28.
Zurück zum Zitat Sag T, Cunkas M (2015) Color image segmentation based on multiobjective artificial bee colony optimization. Appl Soft Comput 34:389–401 Sag T, Cunkas M (2015) Color image segmentation based on multiobjective artificial bee colony optimization. Appl Soft Comput 34:389–401
29.
Zurück zum Zitat Salah MB, Mitiche A, Ayed IB (2011) Multiregion image segmentation by parametric kernel graph cuts. IEEE Trans Image Process 20(2):545–557MathSciNetMATH Salah MB, Mitiche A, Ayed IB (2011) Multiregion image segmentation by parametric kernel graph cuts. IEEE Trans Image Process 20(2):545–557MathSciNetMATH
30.
Zurück zum Zitat Tan KS, Isa NAM (2011) Color image segmentation using histogram thresholding—fuzzy c-means hybrid approach. Pattern Recognit 44(1):1–15MATH Tan KS, Isa NAM (2011) Color image segmentation using histogram thresholding—fuzzy c-means hybrid approach. Pattern Recognit 44(1):1–15MATH
31.
Zurück zum Zitat Huang R, Sang N, Lou D, Tang Q (2011) Image segmentation via coherent clustering in L*a*b* color space. Pattern Recognit Lett 32:391–902 Huang R, Sang N, Lou D, Tang Q (2011) Image segmentation via coherent clustering in L*a*b* color space. Pattern Recognit Lett 32:391–902
32.
Zurück zum Zitat Yang AY, Wright J, Ma Y, Sastry SS (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 110(2):212–225 Yang AY, Wright J, Ma Y, Sastry SS (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 110(2):212–225
33.
Zurück zum Zitat Nock R, Nielsen F (2004) Statistical region merging. IEEE Trans Pattern Anal Mach Intell 26(11):1452–1458 Nock R, Nielsen F (2004) Statistical region merging. IEEE Trans Pattern Anal Mach Intell 26(11):1452–1458
34.
Zurück zum Zitat Mignotte M (2010) Penalized maximum rand estimator for image segmentation. IEEE Trans Image Process 19(6):1610–1624MathSciNetMATH Mignotte M (2010) Penalized maximum rand estimator for image segmentation. IEEE Trans Image Process 19(6):1610–1624MathSciNetMATH
35.
Zurück zum Zitat Rashedi E, Nezamabadi-pour H (2013) A stochastic gravitational approach to feature based color. Eng Appl Artif Intell 26(4):1322–1332 Rashedi E, Nezamabadi-pour H (2013) A stochastic gravitational approach to feature based color. Eng Appl Artif Intell 26(4):1322–1332
36.
Zurück zum Zitat Mignotte M (2014) A non-stationary MRF model for image segmentation from a soft boundary map. Pattern Anal Appl 17(1):129–139MathSciNet Mignotte M (2014) A non-stationary MRF model for image segmentation from a soft boundary map. Pattern Anal Appl 17(1):129–139MathSciNet
37.
Zurück zum Zitat Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480 Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480
38.
Zurück zum Zitat Jang JR, Sun C, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River Jang JR, Sun C, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River
39.
Zurück zum Zitat Estrada FJ, Jepson AD (2009) Benchmarking image segmentation algorithms. Int J Comput Vis 85(2):167–181 Estrada FJ, Jepson AD (2009) Benchmarking image segmentation algorithms. Int J Comput Vis 85(2):167–181
40.
Zurück zum Zitat Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New YorkMATH Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New YorkMATH
41.
Zurück zum Zitat Mignotte M, Helou C (2014) A precision-recall criterion based consensus model for fusing multiple segmentation. Int J Signal Process Image Process Pattern Recognit 7(3):61–82 Mignotte M, Helou C (2014) A precision-recall criterion based consensus model for fusing multiple segmentation. Int J Signal Process Image Process Pattern Recognit 7(3):61–82
42.
Zurück zum Zitat Mignotte M (2014) A label field fusion model with a variation of information estimator for image segmentation. Inf Fusion 20:7–20 Mignotte M (2014) A label field fusion model with a variation of information estimator for image segmentation. Inf Fusion 20:7–20
Metadaten
Titel
Automatic computing of number of clusters for color image segmentation employing fuzzy c-means by extracting chromaticity features of colors
verfasst von
Farid García-Lamont
Jair Cervantes
Asdrúbal López-Chau
Arturo Yee-Rendón
Publikationsdatum
25.07.2018
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-018-0729-9

Premium Partner