Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Balanced SAM-kNN: Online Learning with Heterogeneous Drift and Imbalanced Data

verfasst von: Valerie Vaquet, Barbara Hammer

Erschienen in: Artificial Neural Networks and Machine Learning – ICANN 2020

Verlag: Springer International Publishing

share
TEILEN

Abstract

Recently, machine learning techniques are often applied in real world scenarios where learning signals are provided as a stream of data points, and models need to be adapted online according to the current information. A severe problem of such settings consists in the fact that the underlying data distribution might change over time and concept drift or change of the feature characteristics have to be dealt with. In addition, data are often imbalanced because training signals for rare classes are particularly sparse. In the last years, a number of learning technologies have been proposed, which can reliably learn in the presence of drift, whereby non-parametric approaches such as the recent model SAM-kNN [10] can deal particularly well with heterogeneous or priorly unknown types of drift. Yet these methods share the deficiencies of the underlying vanilla-kNN classifier when dealing with imbalanced classes. In this contribution, we propose intuitive extensions of SAM-kNN, which incorporate successful balancing techniques for kNN, namely SMOTE-sampling [1] and kENN [9], respectively, into the online learning scenario. Besides, we propose a new method, Informed Downsampling, for solving class imbalance in non-stationary settings with underlying drift, and demonstrate its superiority in a number of benchmarks.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Bowyer, K.W., Chawla, N.V., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002) CrossRef Bowyer, K.W., Chawla, N.V., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002) CrossRef
9.
Zurück zum Zitat Li, Y., Zhang, X.: Improving k nearest neighbor with exemplar generalization for imbalanced classification. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 321–332. Springer, Heidelberg (2011) CrossRef Li, Y., Zhang, X.: Improving k nearest neighbor with exemplar generalization for imbalanced classification. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 321–332. Springer, Heidelberg (2011) CrossRef
11.
Zurück zum Zitat Losing, V., Yoshikawa, T., Hasenjäger, M., Hammer, B., Wersing, H.: Personalized online learning of whole-body motion classes using multiple inertial measurement units. In: International Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, 20–24 May 2019, pp. 9530–9536 (2019). https://​doi.​org/​10.​1109/​ICRA.​2019.​8794251 Losing, V., Yoshikawa, T., Hasenjäger, M., Hammer, B., Wersing, H.: Personalized online learning of whole-body motion classes using multiple inertial measurement units. In: International Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, 20–24 May 2019, pp. 9530–9536 (2019). https://​doi.​org/​10.​1109/​ICRA.​2019.​8794251
Metadaten
Titel
Balanced SAM-kNN: Online Learning with Heterogeneous Drift and Imbalanced Data
verfasst von
Valerie Vaquet
Barbara Hammer
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-61616-8_68

Premium Partner