Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.08.2018 | Regular Paper

Batch and incremental dynamic factor machine learning for multivariate and multi-step-ahead forecasting

Zeitschrift:
International Journal of Data Science and Analytics
Autoren:
Jacopo De Stefani, Yann-Aël Le Borgne, Olivier Caelen, Dalila Hattab, Gianluca Bontempi
Wichtige Hinweise
This paper is an extension version of the DSAA’2017 Research Track paper titled: “A Dynamic Factor Machine Learning Method for Multivariate and Multi-Step Ahead Forecasting” [14].

Abstract

Most multivariate forecasting methods in the literature are restricted to vector time series of low dimension, linear methods and short horizons. Big data revolution is instead shifting the focus to problems (e.g., issued from the IoT technology) characterized by very large dimension, nonlinearity and long forecasting horizons. This paper discusses and compares a set of state-of-the-art methods which could be promising in tackling such challenges. Also, it proposes DFML, a machine-learning version of the dynamic factor model, a successful forecasting methodology well-known in econometrics. The DFML strategy is based on a out-of-sample selection of the nonlinear forecaster, the number of latent components and the multi-step-ahead strategy. We will discuss both a batch and an incremental version of DFML, and we will show that it can consistently outperform state-of-the-art methods in a number of Synthetic and real forecasting tasks.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise