Skip to main content

2018 | OriginalPaper | Buchkapitel

13. Bending of a Cantilever Piezoelectric Semiconductor Fiber Under an End Force

verfasst von : Chunli Zhang, Xiaoyuan Wang, Weiqiu Chen, Jiashi Yang

Erschienen in: Generalized Models and Non-classical Approaches in Complex Materials 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a theoretical analysis on the bending and shear of a cantilever ZnO piezoelectric semiconductor fiber under a transverse end force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics, and the conservation of charge of electrons and holes is used. The equations are linearized for a small end force and small electromechanical fields as well as small carrier concentration perturbations. A first-order, one-dimensional theory for the bending of ZnO fibers with shear deformation is derived from the linearized three-dimensional equations. An analytical solution is obtained. The electromechanical fields and carrier concentrations are calculated. It is found that the electric potential is nearly constant along the fiber except near the fixed end of the cantilever, and that the electron distribution over a cross section is due to the transverse shear force and the piezoelectric constant e24.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Adv. Mater. 15, 432–436 (2003)CrossRef Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Adv. Mater. 15, 432–436 (2003)CrossRef
2.
Zurück zum Zitat Wang, Z.L.: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)CrossRef Wang, Z.L.: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)CrossRef
3.
Zurück zum Zitat Kumar, B., Kim, S.W.: Recent advances in power generation through piezoelectric nanogenerators. J. Mater. Chem. 21, 18946–18958 (2011)CrossRef Kumar, B., Kim, S.W.: Recent advances in power generation through piezoelectric nanogenerators. J. Mater. Chem. 21, 18946–18958 (2011)CrossRef
4.
Zurück zum Zitat Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRef Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRef
5.
Zurück zum Zitat Hu, Y.F., Chang, Y.L., Fei, P., Snyder, R.L., Wang, Z.L.: Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010)CrossRef Hu, Y.F., Chang, Y.L., Fei, P., Snyder, R.L., Wang, Z.L.: Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010)CrossRef
6.
Zurück zum Zitat Araneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)CrossRef Araneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)CrossRef
7.
Zurück zum Zitat Ji, J.L., Zhou, Z.Y., Yang, X., Zhang, W.D., Sang, S.B., Li, P.W.: One-dimensional nano-interconnection formation. Small 9, 3014–3029 (2013)CrossRef Ji, J.L., Zhou, Z.Y., Yang, X., Zhang, W.D., Sang, S.B., Li, P.W.: One-dimensional nano-interconnection formation. Small 9, 3014–3029 (2013)CrossRef
8.
Zurück zum Zitat Shen, Y., Hong, J., Xu, S., Lin, S.S., Fang, H., Zhang, S., Ding, Y., Snyder, R.L., Wang, Z.L.: A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv. Func. Mater. 20, 703–707 (2010)CrossRef Shen, Y., Hong, J., Xu, S., Lin, S.S., Fang, H., Zhang, S., Ding, Y., Snyder, R.L., Wang, Z.L.: A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv. Func. Mater. 20, 703–707 (2010)CrossRef
9.
Zurück zum Zitat Chen, T.T., Cheng, C.L., Fu, S.P., Chen, Y.F.: Photoelastic effect in ZnO nanorods. Nanotechnology 18, 225705 (2007)CrossRef Chen, T.T., Cheng, C.L., Fu, S.P., Chen, Y.F.: Photoelastic effect in ZnO nanorods. Nanotechnology 18, 225705 (2007)CrossRef
10.
Zurück zum Zitat Yoo, J., Lee, C.H., Doh, Y.J., Jung, H.S., Yi, G.C.: Modulation doping in ZnO nanorods for electrical nanodevice application. Appl. Phys. Lett. 94, 223117 (2009)CrossRef Yoo, J., Lee, C.H., Doh, Y.J., Jung, H.S., Yi, G.C.: Modulation doping in ZnO nanorods for electrical nanodevice application. Appl. Phys. Lett. 94, 223117 (2009)CrossRef
11.
Zurück zum Zitat Xue, H.Z., Pan, N., Li, M., Wu, Y.K., Wang, X.P., Hou, J.G.: Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology 21, 215701 (2010)CrossRef Xue, H.Z., Pan, N., Li, M., Wu, Y.K., Wang, X.P., Hou, J.G.: Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology 21, 215701 (2010)CrossRef
12.
Zurück zum Zitat Gao, P.X., Song, J.H., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)CrossRef Gao, P.X., Song, J.H., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)CrossRef
13.
Zurück zum Zitat Choi, M.Y., Choi, D., Jin, M.J., Kim, I., Kim, S.H., Choi, J.Y., Lee, S.Y., Kim, J.M., Kim, S.W.: Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009)CrossRef Choi, M.Y., Choi, D., Jin, M.J., Kim, I., Kim, S.H., Choi, J.Y., Lee, S.Y., Kim, J.M., Kim, S.W.: Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009)CrossRef
14.
Zurück zum Zitat Romano, G., Mantini, G., Garlo, A.D., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401 (2011)CrossRef Romano, G., Mantini, G., Garlo, A.D., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401 (2011)CrossRef
15.
Zurück zum Zitat Asthana, A., Ardakani, H.A., Yap, Y.K., Yassar, R.S.: Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts. J. Mater. Chem. C 2, 3995–4004 (2014)CrossRef Asthana, A., Ardakani, H.A., Yap, Y.K., Yassar, R.S.: Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts. J. Mater. Chem. C 2, 3995–4004 (2014)CrossRef
16.
Zurück zum Zitat Liao, Q.L., Zhang, Z., Zhang, X.H., Mohr, M., Zhang, Y., Fecht, H.J.: Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7, 917–928 (2014)CrossRef Liao, Q.L., Zhang, Z., Zhang, X.H., Mohr, M., Zhang, Y., Fecht, H.J.: Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7, 917–928 (2014)CrossRef
17.
Zurück zum Zitat Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)CrossRef Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)CrossRef
18.
Zurück zum Zitat Buyukkose, S., Hernandez-Minguez, A., Vratzov, B., Somaschini, C., Geelhaar, L., Riechert, H., van der Wiel, W.G., Santos, P.V.: High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology 25, 135204 (2014)CrossRef Buyukkose, S., Hernandez-Minguez, A., Vratzov, B., Somaschini, C., Geelhaar, L., Riechert, H., van der Wiel, W.G., Santos, P.V.: High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology 25, 135204 (2014)CrossRef
19.
Zurück zum Zitat Yu, J., Ippolito, S.J., Wlodarski, W., Strano, M., Kalantar-Zadeh, K.: Nanorod based Shottky contact gas sensors in reversed bias condition. Nanotechnology 21, 265502 (2010)CrossRef Yu, J., Ippolito, S.J., Wlodarski, W., Strano, M., Kalantar-Zadeh, K.: Nanorod based Shottky contact gas sensors in reversed bias condition. Nanotechnology 21, 265502 (2010)CrossRef
20.
Zurück zum Zitat Chen, T.P., Young, S.J., Chang, S.J., Hsiao, C.H., Hsu, Y.J.: Bending effects of ZnO nanorod metal-semiconductor-metal photodetectors on flexible polyimide substrate. Nanoscale Res. Lett. 7, 214 (2012)CrossRef Chen, T.P., Young, S.J., Chang, S.J., Hsiao, C.H., Hsu, Y.J.: Bending effects of ZnO nanorod metal-semiconductor-metal photodetectors on flexible polyimide substrate. Nanoscale Res. Lett. 7, 214 (2012)CrossRef
21.
Zurück zum Zitat Wang, C.H., Liao, W.S., Ku, N.J., Li, Y.C., Chen, Y.C., Tu, L.W., Liu, C.P.: Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small 10, 4718–4725 (2014)CrossRef Wang, C.H., Liao, W.S., Ku, N.J., Li, Y.C., Chen, Y.C., Tu, L.W., Liu, C.P.: Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small 10, 4718–4725 (2014)CrossRef
22.
Zurück zum Zitat Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)CrossRef Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)CrossRef
23.
Zurück zum Zitat Auld, B.A.: Acoustic Fields and Waves in Solids, vol. I. Wiley, New York (1973) Auld, B.A.: Acoustic Fields and Waves in Solids, vol. I. Wiley, New York (1973)
24.
Zurück zum Zitat Pierret, R.F.: Semiconductor Fundamentals, 2nd edn. Addison-Wesley, Reading, Massachusetts (1988) Pierret, R.F.: Semiconductor Fundamentals, 2nd edn. Addison-Wesley, Reading, Massachusetts (1988)
25.
Zurück zum Zitat Mindlin, R.D.: Low frequency vibrations of elastic bars. Int. J. Solids Struct. 12, 27–49 (1976)CrossRef Mindlin, R.D.: Low frequency vibrations of elastic bars. Int. J. Solids Struct. 12, 27–49 (1976)CrossRef
26.
Zurück zum Zitat Dokmeci, M.C.: A theory of high frequency vibrations of piezoelectric crystal bars. Int. J. Solids Struct. 10, 401–409 (1974)CrossRef Dokmeci, M.C.: A theory of high frequency vibrations of piezoelectric crystal bars. Int. J. Solids Struct. 10, 401–409 (1974)CrossRef
27.
Zurück zum Zitat Chou, C.S., Yang, J.W., Huang, Y.C., Yang, H.J.: Analysis on vibrating piezoelectric beam gyroscope. Int. J. Appl. Electromagn. Mech. 2, 227–241 (1991) Chou, C.S., Yang, J.W., Huang, Y.C., Yang, H.J.: Analysis on vibrating piezoelectric beam gyroscope. Int. J. Appl. Electromagn. Mech. 2, 227–241 (1991)
28.
Zurück zum Zitat Yang, J.S.: Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. Int. J. Appl. Electromagn. Mech. 9, 409–420 (1998)CrossRef Yang, J.S.: Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. Int. J. Appl. Electromagn. Mech. 9, 409–420 (1998)CrossRef
29.
Zurück zum Zitat Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. J. Zhejiang Univ. SCIENCE A 17, 37–44 (2016)CrossRef Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. J. Zhejiang Univ. SCIENCE A 17, 37–44 (2016)CrossRef
30.
Zurück zum Zitat Wauer, J., Suherman, S.: Thickness vibrations of a piezo-semiconducting plate layer. Int. J. Eng. Sci. 35, 1387–1404 (1997)CrossRef Wauer, J., Suherman, S.: Thickness vibrations of a piezo-semiconducting plate layer. Int. J. Eng. Sci. 35, 1387–1404 (1997)CrossRef
31.
Zurück zum Zitat Yang, J.S., Song, Y.C., Soh, A.K.: Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Arch. Appl. Mech. 76, 381–390 (2006)CrossRef Yang, J.S., Song, Y.C., Soh, A.K.: Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Arch. Appl. Mech. 76, 381–390 (2006)CrossRef
32.
Zurück zum Zitat Hu, Y.T., Zeng, Y., Yang, J.S.: A Mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. Int. J. Solids Struct. 44, 3928–3938 (2007)CrossRef Hu, Y.T., Zeng, Y., Yang, J.S.: A Mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. Int. J. Solids Struct. 44, 3928–3938 (2007)CrossRef
33.
Zurück zum Zitat Sladek, J., Sladek, V., Pan, E., Young, D.L.: Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. Comput. Model. Eng. Sci. 99, 273–296 (2014)MathSciNetMATH Sladek, J., Sladek, V., Pan, E., Young, D.L.: Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. Comput. Model. Eng. Sci. 99, 273–296 (2014)MathSciNetMATH
34.
Zurück zum Zitat Sladek, J., Sladek, V., Pan, E., Münsche, M.: Fracture analysis in piezoelectric semiconductors under a thermal load. Eng. Fract. Mech. 126, 27–39 (2014)CrossRef Sladek, J., Sladek, V., Pan, E., Münsche, M.: Fracture analysis in piezoelectric semiconductors under a thermal load. Eng. Fract. Mech. 126, 27–39 (2014)CrossRef
35.
Zurück zum Zitat Li, P., Jin, F., Yang, J.S.: Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater. Struct. 24, 025021 (2015)CrossRef Li, P., Jin, F., Yang, J.S.: Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater. Struct. 24, 025021 (2015)CrossRef
36.
Zurück zum Zitat Golovnev, A., Trimper, S.: Exact solution of the Poisson-Nernst-Planck equations in the linear regime. J. Chem. Phys. 131, 114903 (2009)CrossRef Golovnev, A., Trimper, S.: Exact solution of the Poisson-Nernst-Planck equations in the linear regime. J. Chem. Phys. 131, 114903 (2009)CrossRef
37.
Zurück zum Zitat Zhou, S.A., Uesaka, M.: Modeling of transport phenomena of ions and polarizable molecules: a generalized Poisson-Nernst-Planck theory. Int. J. Eng. Sci. 44, 938–948 (2006)CrossRef Zhou, S.A., Uesaka, M.: Modeling of transport phenomena of ions and polarizable molecules: a generalized Poisson-Nernst-Planck theory. Int. J. Eng. Sci. 44, 938–948 (2006)CrossRef
38.
Zurück zum Zitat de Lorenzi, H.G., Tiersten, H.F.: On the interaction of the electromagnetic field with heat conducting deformable semiconductors. J. Math. Phys. 16, 938–957 (1975)CrossRef de Lorenzi, H.G., Tiersten, H.F.: On the interaction of the electromagnetic field with heat conducting deformable semiconductors. J. Math. Phys. 16, 938–957 (1975)CrossRef
39.
Zurück zum Zitat McCarthy, M.F., Tiersten, H.F.: on integral forms of the balance laws for deformable semiconductors. Arch. Ration. Mech. Anal. 68, 27–36 (1978)MathSciNetCrossRef McCarthy, M.F., Tiersten, H.F.: on integral forms of the balance laws for deformable semiconductors. Arch. Ration. Mech. Anal. 68, 27–36 (1978)MathSciNetCrossRef
40.
Zurück zum Zitat Maugin, G.A., Daher, N.: Phenomenological theory of elastic semiconductors. Int. J. Eng. Sci. 24, 703–731 (1986)MathSciNetCrossRef Maugin, G.A., Daher, N.: Phenomenological theory of elastic semiconductors. Int. J. Eng. Sci. 24, 703–731 (1986)MathSciNetCrossRef
41.
Zurück zum Zitat Daher, N., Maugin, G.A.: Waves in elastic semiconductors in a bias electric field. Int. J. Eng. Sci. 24, 733–754 (1986)CrossRef Daher, N., Maugin, G.A.: Waves in elastic semiconductors in a bias electric field. Int. J. Eng. Sci. 24, 733–754 (1986)CrossRef
42.
Zurück zum Zitat Daher, N., Maugin, G.A.: Nonlinear electroacoustic equations in semiconductors with interfaces (relation between the macroscopic and the quasi-microscopic descriptions). Int. J. Eng. Sci. 26, 37–58 (1988)CrossRef Daher, N., Maugin, G.A.: Nonlinear electroacoustic equations in semiconductors with interfaces (relation between the macroscopic and the quasi-microscopic descriptions). Int. J. Eng. Sci. 26, 37–58 (1988)CrossRef
43.
Zurück zum Zitat Daher, N., Maugin, G.A.: Bulk waves in elastic semiconductors in the presence of an initial state. Int. J. Eng. Sci. 26, 993–1012 (1988)MathSciNetCrossRef Daher, N., Maugin, G.A.: Bulk waves in elastic semiconductors in the presence of an initial state. Int. J. Eng. Sci. 26, 993–1012 (1988)MathSciNetCrossRef
44.
Zurück zum Zitat Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRef Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)CrossRef
45.
Zurück zum Zitat Gao, Y.F., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Lett. 7, 2499–2505 (2007)CrossRef Gao, Y.F., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Lett. 7, 2499–2505 (2007)CrossRef
Metadaten
Titel
Bending of a Cantilever Piezoelectric Semiconductor Fiber Under an End Force
verfasst von
Chunli Zhang
Xiaoyuan Wang
Weiqiu Chen
Jiashi Yang
Copyright-Jahr
2018
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-77504-3_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.