Skip to main content

2012 | OriginalPaper | Buchkapitel

Biochemical Conversion of Biomass to Fuels

verfasst von : Swetha Mahalaxmi, Prof. Dr. Clint Williford

Erschienen in: Handbook of Climate Change Mitigation

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomass can provide both hydrocarbon fuels and chemical compounds such as alcohols, gums, sugars, lipid-based products, etc. Biomass-derived fuels have acquired a lot of attention during recent years because of the abundance of supply of resources and lower green house gas emissions. Grasses, agricultural residues, animal residues and waste, used oils, etc., can be used as starting materials in the production of biofuels. Ethanol and biodiesel have found greatest application and contribute significantly to fuels. However there is growing interest in other alternatives: hydrogen, methane, butanol, renewable diesel, and petroleum compatible fuels from advanced catalytic biotech processes. Characteristics of various feedstocks and fuels, processes for conversion of biomass to biofuels, the physical, chemical factors and limitations effecting the conversion of biomass to fuels are discussed in this chapter. Process parameters include pH, temperature, and residence time. Additionally, chemical parameters include carbon source, nutrients, acid and alkaline hydrolysis agents, and phenolic inhibitors and sugars generated within the process. Several limitations to bioconversion of biomass are described such as size reduction, crystallinity, by-product inhibition to fermentation, deactivation of cellulases, ethanol tolerance by yeast, and co-fermentation of various sugars. Recent innovations and future developments in recombinant DNA technology and protein engineering are aimed at overcoming limitations to bioconversion. Understanding the limitations and applying suitable biotechnological applications will support future developments for producing biofuels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 2:209–228CrossRef Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 2:209–228CrossRef
2.
Zurück zum Zitat McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 1:37–46CrossRef McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 1:37–46CrossRef
3.
Zurück zum Zitat Shuler ML, Kargi F (2008) Bioprocess engineering basic concepts. Prentice Hall International Series, New York Shuler ML, Kargi F (2008) Bioprocess engineering basic concepts. Prentice Hall International Series, New York
4.
Zurück zum Zitat Feldman D (1985) Wood–chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J Polym Sci 11:601–602 Feldman D (1985) Wood–chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J Polym Sci 11:601–602
5.
Zurück zum Zitat Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 1:5–37CrossRef Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 1:5–37CrossRef
6.
Zurück zum Zitat Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DCCrossRef Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DCCrossRef
7.
Zurück zum Zitat Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renewable Energy 14:2111–2127CrossRef Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renewable Energy 14:2111–2127CrossRef
8.
Zurück zum Zitat Kalia AK, Singh SP (1998) Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour Technol 1:63–66CrossRef Kalia AK, Singh SP (1998) Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour Technol 1:63–66CrossRef
9.
Zurück zum Zitat Tran NH, Bartlett JR, Kannangara GSK et al (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 2:265–274CrossRef Tran NH, Bartlett JR, Kannangara GSK et al (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 2:265–274CrossRef
10.
Zurück zum Zitat Jung K-W, Kim D-H, Shin H-S (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 3:2745–2750CrossRef Jung K-W, Kim D-H, Shin H-S (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 3:2745–2750CrossRef
11.
Zurück zum Zitat Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crops and Prod 2:504–513CrossRef Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crops and Prod 2:504–513CrossRef
12.
Zurück zum Zitat Rupar K, Sanati M (2005) The release of terpenes during storage of biomass. Biomass Bioenergy 1:29–34CrossRef Rupar K, Sanati M (2005) The release of terpenes during storage of biomass. Biomass Bioenergy 1:29–34CrossRef
13.
Zurück zum Zitat Venturi P, Gigler JK, Huisman W (1999) Economical and technical comparison between herbaceous (Miscanthus × giganteus) and woody energy crops (Salix viminalis). Renewable Energy 1–4:1023–1026CrossRef Venturi P, Gigler JK, Huisman W (1999) Economical and technical comparison between herbaceous (Miscanthus × giganteus) and woody energy crops (Salix viminalis). Renewable Energy 1–4:1023–1026CrossRef
14.
Zurück zum Zitat Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 13:4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 13:4851–4861CrossRef
15.
Zurück zum Zitat Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts Biorefining 1:26–40CrossRef Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts Biorefining 1:26–40CrossRef
16.
Zurück zum Zitat Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef
17.
Zurück zum Zitat Delgenes JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform 34(13). doi:10.1002/chin.200313271 Delgenes JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform 34(13). doi:10.1002/chin.200313271
18.
Zurück zum Zitat Hartmann H, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 3:145–153 Hartmann H, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 3:145–153
19.
Zurück zum Zitat Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 1:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 1:10–18CrossRef
20.
Zurück zum Zitat Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer, BerlinCrossRef Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer, BerlinCrossRef
21.
Zurück zum Zitat Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 18:1986–1993CrossRef Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 18:1986–1993CrossRef
22.
Zurück zum Zitat Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 18:2019–2025CrossRef Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 18:2019–2025CrossRef
23.
Zurück zum Zitat Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 18:1959–1966CrossRef Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 18:1959–1966CrossRef
24.
Zurück zum Zitat Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploitation 3:195–218CrossRef Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploitation 3:195–218CrossRef
25.
Zurück zum Zitat Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A et al (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrogen Energy 15:3141–3146CrossRef Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A et al (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrogen Energy 15:3141–3146CrossRef
26.
Zurück zum Zitat Park MJ, Jo JH, Park D et al (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrogen Energy 12:6194–6202CrossRef Park MJ, Jo JH, Park D et al (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrogen Energy 12:6194–6202CrossRef
27.
Zurück zum Zitat Zhu H, Stadnyk A, Béland M et al (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 11:5078–5084CrossRef Zhu H, Stadnyk A, Béland M et al (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 11:5078–5084CrossRef
28.
Zurück zum Zitat Koutrouli EC, Kalfas H, Gavala HN et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 15:3718–3723CrossRef Koutrouli EC, Kalfas H, Gavala HN et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 15:3718–3723CrossRef
29.
Zurück zum Zitat García V, Päkkilä J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renewable Sustain Energy Rev 2:964–980CrossRef García V, Päkkilä J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renewable Sustain Energy Rev 2:964–980CrossRef
30.
Zurück zum Zitat Wukovits W, Schnitzhofer W et al (2009) Fuels – hydrogen production, biomass: fermentation. In: Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (eds) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam Wukovits W, Schnitzhofer W et al (2009) Fuels – hydrogen production, biomass: fermentation. In: Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (eds) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam
31.
Zurück zum Zitat Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 5:287–297CrossRef Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 5:287–297CrossRef
32.
Zurück zum Zitat Shi Y, Zhao X-T, Cao P et al (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 9:1327–1333CrossRef Shi Y, Zhao X-T, Cao P et al (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 9:1327–1333CrossRef
33.
Zurück zum Zitat Yang Z, Guo R, Xu X et al (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 18:9618–9623CrossRef Yang Z, Guo R, Xu X et al (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 18:9618–9623CrossRef
34.
Zurück zum Zitat Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation. Water Res 5:1414–1424CrossRef Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation. Water Res 5:1414–1424CrossRef
35.
Zurück zum Zitat Koskinen PEP, Lay C-H, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnol Bioeng 4:665–678CrossRef Koskinen PEP, Lay C-H, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnol Bioeng 4:665–678CrossRef
36.
Zurück zum Zitat Pattra S, Sangyoka S, Boonmee M et al (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 19:5256–5265CrossRef Pattra S, Sangyoka S, Boonmee M et al (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 19:5256–5265CrossRef
37.
Zurück zum Zitat Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 5:899–908 Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 5:899–908
38.
Zurück zum Zitat Prakasham RS, Brahmaiah P, Sathish T et al (2009) Fermentative biohydrogen production by mixed anaerobic consortia: Impact of glucose to xylose ratio. Int J Hydrogen Energy 23:9354–9361CrossRef Prakasham RS, Brahmaiah P, Sathish T et al (2009) Fermentative biohydrogen production by mixed anaerobic consortia: Impact of glucose to xylose ratio. Int J Hydrogen Energy 23:9354–9361CrossRef
39.
Zurück zum Zitat Seiffert M, Kaltschmitt M, Miranda JA (2009) The biomethane potential in Chile. Biomass Bioenergy 4:564–572CrossRef Seiffert M, Kaltschmitt M, Miranda JA (2009) The biomethane potential in Chile. Biomass Bioenergy 4:564–572CrossRef
40.
Zurück zum Zitat Anand RC, Singh R (1993) A simple technique, charcoal coating around the digester, improves biogas production in winter. Bioresour Technol 2:151–152CrossRef Anand RC, Singh R (1993) A simple technique, charcoal coating around the digester, improves biogas production in winter. Bioresour Technol 2:151–152CrossRef
41.
Zurück zum Zitat Bansal NK (1988) A techno-economic assessment of solar assisted biogas systems. Energy Sources 4:213–229CrossRef Bansal NK (1988) A techno-economic assessment of solar assisted biogas systems. Energy Sources 4:213–229CrossRef
42.
Zurück zum Zitat Yadvika S, Sreekrishnan TR et al (2004) Enhancement of biogas production from solid substrates using different techniques–a review. Bioresour Technol 1:1–10CrossRef Yadvika S, Sreekrishnan TR et al (2004) Enhancement of biogas production from solid substrates using different techniques–a review. Bioresour Technol 1:1–10CrossRef
43.
Zurück zum Zitat Åhman M (2010) Biomethane in the transport sector–an appraisal of the forgotten option. Energy Policy 1:208–217CrossRef Åhman M (2010) Biomethane in the transport sector–an appraisal of the forgotten option. Energy Policy 1:208–217CrossRef
44.
Zurück zum Zitat Power NM, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 10:1403–1412CrossRef Power NM, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 10:1403–1412CrossRef
45.
Zurück zum Zitat Mabee WE, Saddler JN (2009) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 13:4806–4813 Mabee WE, Saddler JN (2009) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 13:4806–4813
46.
Zurück zum Zitat Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 6:2086–2097CrossRef Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 6:2086–2097CrossRef
47.
Zurück zum Zitat Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 4:340–349CrossRef Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 4:340–349CrossRef
48.
Zurück zum Zitat Dodic S, Popov S, Dodic J et al (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 5:822–827CrossRef Dodic S, Popov S, Dodic J et al (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 5:822–827CrossRef
49.
Zurück zum Zitat Lee J-W, Koo B-W, Choi J-W et al (2008) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 8:2736–2741CrossRef Lee J-W, Koo B-W, Choi J-W et al (2008) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 8:2736–2741CrossRef
50.
Zurück zum Zitat Mohanty SK, Behera S, Swain MR et al (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 5:640–644CrossRef Mohanty SK, Behera S, Swain MR et al (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 5:640–644CrossRef
51.
Zurück zum Zitat Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 5:797–841CrossRef Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 5:797–841CrossRef
52.
Zurück zum Zitat Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood and Wood Prod 3:191–202CrossRef Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood and Wood Prod 3:191–202CrossRef
53.
Zurück zum Zitat Laser M, Schulman D, Allen SG et al (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 1:33–44CrossRef Laser M, Schulman D, Allen SG et al (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 1:33–44CrossRef
54.
Zurück zum Zitat Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 1:711–727CrossRef Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 1:711–727CrossRef
55.
Zurück zum Zitat Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 6:673–686CrossRef Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 6:673–686CrossRef
56.
Zurück zum Zitat Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Elsevier, Kidlington Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Elsevier, Kidlington
57.
Zurück zum Zitat Pan X, Xie D, Gilkes N et al (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 1:1069–1079CrossRef Pan X, Xie D, Gilkes N et al (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 1:1069–1079CrossRef
58.
Zurück zum Zitat Oliva J, Sáez F, Ballesteros I et al (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 1:141–153CrossRef Oliva J, Sáez F, Ballesteros I et al (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 1:141–153CrossRef
59.
Zurück zum Zitat Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 6:792–801CrossRef Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 6:792–801CrossRef
60.
Zurück zum Zitat Tengborg C, Stenberg K, Galbe M et al (1998) Comparison of SO2and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 1:3–15CrossRef Tengborg C, Stenberg K, Galbe M et al (1998) Comparison of SO2and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 1:3–15CrossRef
61.
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 1:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 1:1–11CrossRef
62.
Zurück zum Zitat Chisti Y (1996) Biotechnology Advances. In: Wyman CE (ed). Handbook on bioethanol: Production and utilization, Taylor & Francis, Washington, DC Chisti Y (1996) Biotechnology Advances. In: Wyman CE (ed). Handbook on bioethanol: Production and utilization, Taylor & Francis, Washington, DC
63.
Zurück zum Zitat Xiao W, Clarkson WW (1997) Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1:61–66CrossRef Xiao W, Clarkson WW (1997) Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1:61–66CrossRef
64.
Zurück zum Zitat Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 5:601–607CrossRef Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 5:601–607CrossRef
65.
Zurück zum Zitat Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agric Waste 3:229–233CrossRef Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agric Waste 3:229–233CrossRef
66.
Zurück zum Zitat Xu Z, Wang Q, Jiang Z et al (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 2–3:162–167CrossRef Xu Z, Wang Q, Jiang Z et al (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 2–3:162–167CrossRef
67.
Zurück zum Zitat Silverstein RA, Chen Y, Sharma-Shivappa RR et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 16:3000–3011CrossRef Silverstein RA, Chen Y, Sharma-Shivappa RR et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 16:3000–3011CrossRef
68.
Zurück zum Zitat Carvalheiro F, Duarte LC et al (2008) Hemicellulose biorefineries: a review on biomass pretreatments. National Institute of Science Communication and Information Resources, New Delhi, INDE Carvalheiro F, Duarte LC et al (2008) Hemicellulose biorefineries: a review on biomass pretreatments. National Institute of Science Communication and Information Resources, New Delhi, INDE
69.
Zurück zum Zitat Pavlostathis SG, Gossett JM (1985) Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioeng 3:334–344CrossRef Pavlostathis SG, Gossett JM (1985) Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioeng 3:334–344CrossRef
70.
Zurück zum Zitat Alizadeh H, Teymouri F, Gilbert T et al (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 1:1133–1141CrossRef Alizadeh H, Teymouri F, Gilbert T et al (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 1:1133–1141CrossRef
71.
Zurück zum Zitat Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 4:421–433CrossRef Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 4:421–433CrossRef
72.
Zurück zum Zitat Liu L, Sun J, Li M et al (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 23:5853–5858CrossRef Liu L, Sun J, Li M et al (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 23:5853–5858CrossRef
73.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 8:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 8:3713–3729CrossRef
74.
Zurück zum Zitat Mahalaxmi S, Jackson C, Williford C et al (2010) Estimation of treatment time for microbial preprocessing of biomass. Appl Biochem Biotechnol 5:1414–1422CrossRef Mahalaxmi S, Jackson C, Williford C et al (2010) Estimation of treatment time for microbial preprocessing of biomass. Appl Biochem Biotechnol 5:1414–1422CrossRef
75.
Zurück zum Zitat Maeda RN, Serpa VI, Rocha VAL et al (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 5:1196–1201CrossRef Maeda RN, Serpa VI, Rocha VAL et al (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 5:1196–1201CrossRef
76.
Zurück zum Zitat Kumar R, Singh S, Singh O (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 5:377–391CrossRef Kumar R, Singh S, Singh O (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 5:377–391CrossRef
77.
Zurück zum Zitat Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 13:5270–5295CrossRef Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 13:5270–5295CrossRef
78.
Zurück zum Zitat Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 1:17–24CrossRef Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 1:17–24CrossRef
79.
Zurück zum Zitat Aminifarshidmehr N (1996) The management of chronic suppurative otitis media with acid media solution. Otol Neurotol 1:24–25 Aminifarshidmehr N (1996) The management of chronic suppurative otitis media with acid media solution. Otol Neurotol 1:24–25
80.
Zurück zum Zitat Mohagheghi A, Evans K, Chou Y-C et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 1:885–898CrossRef Mohagheghi A, Evans K, Chou Y-C et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 1:885–898CrossRef
81.
Zurück zum Zitat Dürre P (2008) Fermentative butanol production. Ann N Y Acad Sci 1:353–362CrossRef Dürre P (2008) Fermentative butanol production. Ann N Y Acad Sci 1:353–362CrossRef
82.
Zurück zum Zitat Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 12:1525–1534CrossRef Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 12:1525–1534CrossRef
83.
Zurück zum Zitat Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Memb Sci 1–2:115–125CrossRef Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Memb Sci 1–2:115–125CrossRef
84.
Zurück zum Zitat Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 12:1502–1514CrossRef Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 12:1502–1514CrossRef
85.
Zurück zum Zitat Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioproducts Biorefining 1:57–66CrossRef Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioproducts Biorefining 1:57–66CrossRef
86.
Zurück zum Zitat Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 6:841–846CrossRef Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 6:841–846CrossRef
87.
Zurück zum Zitat Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210 Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210
88.
Zurück zum Zitat Basu HN, Norris ME (1996) Process for production of of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US patent 5525126 Basu HN, Norris ME (1996) Process for production of of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US patent 5525126
89.
Zurück zum Zitat Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 5:1298–1315CrossRef Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 5:1298–1315CrossRef
90.
Zurück zum Zitat Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 8:1155–1163CrossRef Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 8:1155–1163CrossRef
91.
Zurück zum Zitat Panalotov I, Verger R (2000) Enzymatic reactions at interfaces:interfacial and temporal organization of enzymatic hydrolysis. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, New York Panalotov I, Verger R (2000) Enzymatic reactions at interfaces:interfacial and temporal organization of enzymatic hydrolysis. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, New York
92.
Zurück zum Zitat Du W, Xu Y, Liu D et al (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 3–4:125–129CrossRef Du W, Xu Y, Liu D et al (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 3–4:125–129CrossRef
93.
Zurück zum Zitat Watanabe Y, Shimada Y, Sugihara A et al (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 3–5:151–155CrossRef Watanabe Y, Shimada Y, Sugihara A et al (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 3–5:151–155CrossRef
94.
Zurück zum Zitat Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H Freeman, New York Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H Freeman, New York
95.
Zurück zum Zitat Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioproducts Biorefining 1:77–93CrossRef Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioproducts Biorefining 1:77–93CrossRef
96.
Zurück zum Zitat Lee SK, Chou H, Ham TS et al (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 6:556–563CrossRef Lee SK, Chou H, Ham TS et al (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 6:556–563CrossRef
97.
Zurück zum Zitat Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 5:414–419CrossRef Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 5:414–419CrossRef
98.
Zurück zum Zitat Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 3:264–277CrossRef Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 3:264–277CrossRef
99.
Zurück zum Zitat Jansson C, Wullschleger SD, Kalluri UC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. BioScience 9:685–696CrossRef Jansson C, Wullschleger SD, Kalluri UC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. BioScience 9:685–696CrossRef
100.
Zurück zum Zitat Wallecha A, Mishra S (2003) Purification and characterization of two [beta]-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649(1):74–84 Wallecha A, Mishra S (2003) Purification and characterization of two [beta]-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649(1):74–84
101.
Zurück zum Zitat Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 9:2562–2568CrossRef Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 9:2562–2568CrossRef
Metadaten
Titel
Biochemical Conversion of Biomass to Fuels
verfasst von
Swetha Mahalaxmi
Prof. Dr. Clint Williford
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7991-9_26