Skip to main content

2018 | OriginalPaper | Buchkapitel

7. Bioelectrochemical Systems for Transforming Waste to Energy

verfasst von : Nishat Khan, Mohammad Danish Khan, Saima Sultana, Mohammad Zain Khan, Anees Ahmad

Erschienen in: Modern Age Environmental Problems and their Remediation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, BES has emerged as a new and promising approach for wastewater treatment. BES use microorganisms to convert chemical energy to electric energy and other value added chemicals. Compared to the conventional techniques available, it has evolved as a low energy intensive technology with an approach of integrated management of wastewater and recovering energy. This chapter presents a review on the different types of BESs with a brief discussion of their principle and anodic and cathodic reactions involved. Further, an overview is presented of recent work with different types of wastewater used as substrate, utilising different donors and acceptors of electrons involved and the various kind of electrodes used in various BES setups. BES is still a relevantly new and emerging field that deals with harnessing energy from wastewater with the potential to change the wastewater remediation techniques in future with gross positive energy recovery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abourached C, Catal T, Liu H (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res 51:228–233CrossRef Abourached C, Catal T, Liu H (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res 51:228–233CrossRef
Zurück zum Zitat Al-Karaghouli A, Kazmerski LL (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sust Energ Rev 24:343–356CrossRef Al-Karaghouli A, Kazmerski LL (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sust Energ Rev 24:343–356CrossRef
Zurück zum Zitat Batlle-Vilanovaa P, Puig S, Gonzalez-Olmos R et al (2014) Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. Int J Hydrog Energy 9:1–9 Batlle-Vilanovaa P, Puig S, Gonzalez-Olmos R et al (2014) Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. Int J Hydrog Energy 9:1–9
Zurück zum Zitat Brastad KS, He Z (2013) Water softening using microbial desalination cell technology. Desalination 309:32–37CrossRef Brastad KS, He Z (2013) Water softening using microbial desalination cell technology. Desalination 309:32–37CrossRef
Zurück zum Zitat Cai W, Liu W, Han J, Wang A (2016) Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosens Bioelectron 80:118–122CrossRef Cai W, Liu W, Han J, Wang A (2016) Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosens Bioelectron 80:118–122CrossRef
Zurück zum Zitat Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406CrossRef Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406CrossRef
Zurück zum Zitat Cao X, Huang X, Liang P et al (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152CrossRef Cao X, Huang X, Liang P et al (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152CrossRef
Zurück zum Zitat Chen X, Xia X, Liang P et al (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45:2465–2470CrossRef Chen X, Xia X, Liang P et al (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45:2465–2470CrossRef
Zurück zum Zitat Chen Y, Shen J, Huang L et al (2016) Enhanced Cd (II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3. Int J Hydrog Energy 1:13368–13379CrossRef Chen Y, Shen J, Huang L et al (2016) Enhanced Cd (II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3. Int J Hydrog Energy 1:13368–13379CrossRef
Zurück zum Zitat Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574CrossRef Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574CrossRef
Zurück zum Zitat Cucu A, Costache TA, Divona M et al (2013) Microbial electrolysis cell: hydrogen production using microbial consortia from romanian waters electrode in the anodic chamber; protons become reduced directly by the microorganisms. 8:1179–1190 Cucu A, Costache TA, Divona M et al (2013) Microbial electrolysis cell: hydrogen production using microbial consortia from romanian waters electrode in the anodic chamber; protons become reduced directly by the microorganisms. 8:1179–1190
Zurück zum Zitat Cui Y, Rashid N, Hu N et al (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680CrossRef Cui Y, Rashid N, Hu N et al (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680CrossRef
Zurück zum Zitat Dai H, Yang H, Liu X et al (2016) Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell. Bioresour Technol 202:220–225CrossRef Dai H, Yang H, Liu X et al (2016) Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell. Bioresour Technol 202:220–225CrossRef
Zurück zum Zitat Elmekawy A, Srikanth S, Vanbroekhoven K et al (2014) Bioelectro-catalytic valorization of dark fermentation ef fl uents by acetate oxidizing bacteria in bioelectrochemical system (BES). J Power Sources 262:183–191CrossRef Elmekawy A, Srikanth S, Vanbroekhoven K et al (2014) Bioelectro-catalytic valorization of dark fermentation ef fl uents by acetate oxidizing bacteria in bioelectrochemical system (BES). J Power Sources 262:183–191CrossRef
Zurück zum Zitat Escapa A, Manuel M-F, Moran A et al (2009) Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuel 69:4612–4618CrossRef Escapa A, Manuel M-F, Moran A et al (2009) Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuel 69:4612–4618CrossRef
Zurück zum Zitat Escapa A, Gil-Carrera L, García V, Morán A (2012) Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Bioresour Technol 117:55–62CrossRef Escapa A, Gil-Carrera L, García V, Morán A (2012) Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Bioresour Technol 117:55–62CrossRef
Zurück zum Zitat Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93CrossRef Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93CrossRef
Zurück zum Zitat Gouveia L, Neves C, Sebastião D et al (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 154:171–177CrossRef Gouveia L, Neves C, Sebastião D et al (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 154:171–177CrossRef
Zurück zum Zitat Gupta S, Yadav A, Verma N (2017) Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem Eng J 307:729–738CrossRef Gupta S, Yadav A, Verma N (2017) Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem Eng J 307:729–738CrossRef
Zurück zum Zitat Habibul N, Hu Y, Wang YK et al (2016) Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells. Environ Sci Technol 50:3882–3889CrossRef Habibul N, Hu Y, Wang YK et al (2016) Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells. Environ Sci Technol 50:3882–3889CrossRef
Zurück zum Zitat Han TH, Khan MM, Kalathil S et al (2015) Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind Eng Chem Res 52:8174–8181CrossRef Han TH, Khan MM, Kalathil S et al (2015) Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind Eng Chem Res 52:8174–8181CrossRef
Zurück zum Zitat Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448CrossRef Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448CrossRef
Zurück zum Zitat Hassan SHA, Gad El-Rab SMF, Rahimnejad M et al (2014) Electricity generation from rice straw using a microbial fuel cell. Int J Hydrog Energy 39:9490–9496CrossRef Hassan SHA, Gad El-Rab SMF, Rahimnejad M et al (2014) Electricity generation from rice straw using a microbial fuel cell. Int J Hydrog Energy 39:9490–9496CrossRef
Zurück zum Zitat Helder M, Strik DPBTB, Hamelers HVM et al (2010) Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101:3541–3547CrossRef Helder M, Strik DPBTB, Hamelers HVM et al (2010) Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101:3541–3547CrossRef
Zurück zum Zitat Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43CrossRef Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43CrossRef
Zurück zum Zitat Kadier A, Simayi Y, Abdeshahian P et al (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55:427–443CrossRef Kadier A, Simayi Y, Abdeshahian P et al (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55:427–443CrossRef
Zurück zum Zitat Kakarla R, Min B (2014) Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrog Energy 39:10275–10283CrossRef Kakarla R, Min B (2014) Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrog Energy 39:10275–10283CrossRef
Zurück zum Zitat Khan MZ, Singh S, Sultana S et al (2015) Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J Chem 39:5597–5604CrossRef Khan MZ, Singh S, Sultana S et al (2015) Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J Chem 39:5597–5604CrossRef
Zurück zum Zitat Khan MD, Khan N, Sultana S et al (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158CrossRef Khan MD, Khan N, Sultana S et al (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158CrossRef
Zurück zum Zitat Khater D, El-khatib KM, Hazaa M, Hassan RYA (2015) Electricity generation using Glucose as substrate in microbial fuel cell. J Bas Environ Sci 2:84–98 Khater D, El-khatib KM, Hazaa M, Hassan RYA (2015) Electricity generation using Glucose as substrate in microbial fuel cell. J Bas Environ Sci 2:84–98
Zurück zum Zitat Kim Y, Logan BE (2013) Microbial desalination cells for energy production and desalination. Desalination 308:122–130CrossRef Kim Y, Logan BE (2013) Microbial desalination cells for energy production and desalination. Desalination 308:122–130CrossRef
Zurück zum Zitat Kokabian B, Gude VG (2013) Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ Sci Process Impacts 15:2178–2185CrossRef Kokabian B, Gude VG (2013) Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ Sci Process Impacts 15:2178–2185CrossRef
Zurück zum Zitat Lin CC, Wei CH, Chen CI et al (2013) Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour Technol 135:640–643CrossRef Lin CC, Wei CH, Chen CI et al (2013) Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour Technol 135:640–643CrossRef
Zurück zum Zitat Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662CrossRef Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662CrossRef
Zurück zum Zitat Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRef Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRef
Zurück zum Zitat Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264CrossRef Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264CrossRef
Zurück zum Zitat Luo H, Fu S, Liu G et al (2014) Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells. Bioresour Technol 167:462–468CrossRef Luo H, Fu S, Liu G et al (2014) Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells. Bioresour Technol 167:462–468CrossRef
Zurück zum Zitat Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRef Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRef
Zurück zum Zitat Mirzaienia F, Asadipour A, Jonidi A, Malakootian M (2016) Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell. Appl Water Sci Mirzaienia F, Asadipour A, Jonidi A, Malakootian M (2016) Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell. Appl Water Sci
Zurück zum Zitat Pant D, Singh A, Van Bogaert G et al (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263CrossRef Pant D, Singh A, Van Bogaert G et al (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263CrossRef
Zurück zum Zitat Ping Q, Abu-Reesh I, He Z (2015) Boron removal from saline water by a microbial desalination cell integrated with donnan dialysis. Desalination 376:55–61CrossRef Ping Q, Abu-Reesh I, He Z (2015) Boron removal from saline water by a microbial desalination cell integrated with donnan dialysis. Desalination 376:55–61CrossRef
Zurück zum Zitat Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5:1–10CrossRef Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5:1–10CrossRef
Zurück zum Zitat Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRef Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRef
Zurück zum Zitat Rajeswari S, Vidhya S, Krishnaraj RN et al (2016) Utilization of soak liquor in microbial fuel cell. Fuel 181:148–156CrossRef Rajeswari S, Vidhya S, Krishnaraj RN et al (2016) Utilization of soak liquor in microbial fuel cell. Fuel 181:148–156CrossRef
Zurück zum Zitat Ranjan B, Elbeshbishy E, Hafez H, Lee H (2015) Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour Technol 198:223–230CrossRef Ranjan B, Elbeshbishy E, Hafez H, Lee H (2015) Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour Technol 198:223–230CrossRef
Zurück zum Zitat Rezaei F, Xing D, Wagner R et al (2009) Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678CrossRef Rezaei F, Xing D, Wagner R et al (2009) Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678CrossRef
Zurück zum Zitat Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRef Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRef
Zurück zum Zitat Rozendal RA, Hamelers HVM, Euverink GJW et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640CrossRef Rozendal RA, Hamelers HVM, Euverink GJW et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640CrossRef
Zurück zum Zitat Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008a) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32(9):870–876CrossRef Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008a) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32(9):870–876CrossRef
Zurück zum Zitat Strik DPBTB, Terlouw H, Hamelers HVM, Buisman CJN (2008b) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668CrossRef Strik DPBTB, Terlouw H, Hamelers HVM, Buisman CJN (2008b) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668CrossRef
Zurück zum Zitat Strik DPBTB, Timmers RA, Helder M et al (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29:41–49CrossRef Strik DPBTB, Timmers RA, Helder M et al (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29:41–49CrossRef
Zurück zum Zitat Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRef Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRef
Zurück zum Zitat ter Heijne A, Liu F, Van Der Weijden R et al (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381CrossRef ter Heijne A, Liu F, Van Der Weijden R et al (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381CrossRef
Zurück zum Zitat Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86:973–981CrossRef Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86:973–981CrossRef
Zurück zum Zitat U.S. Energy Information Administration (2016) International Energy Outlook 2016 U.S. Energy Information Administration (2016) International Energy Outlook 2016
Zurück zum Zitat Wei Y, Van Houten RT, Borger AR et al (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37:4453–4467CrossRef Wei Y, Van Houten RT, Borger AR et al (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37:4453–4467CrossRef
Zurück zum Zitat Xu C, Poon K, Choi MMF, Wang R (2015) Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res 22:15621–15635CrossRef Xu C, Poon K, Choi MMF, Wang R (2015) Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res 22:15621–15635CrossRef
Zurück zum Zitat Yong Y-C, Dong X-C, Chan-Park MB et al (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6:2394–2400CrossRef Yong Y-C, Dong X-C, Chan-Park MB et al (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6:2394–2400CrossRef
Zurück zum Zitat Zhao F, Rahunen N, Varcoe JR et al (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42:4971–4976CrossRef Zhao F, Rahunen N, Varcoe JR et al (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42:4971–4976CrossRef
Metadaten
Titel
Bioelectrochemical Systems for Transforming Waste to Energy
verfasst von
Nishat Khan
Mohammad Danish Khan
Saima Sultana
Mohammad Zain Khan
Anees Ahmad
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-64501-8_7