Skip to main content
Erschienen in: Mitigation and Adaptation Strategies for Global Change 2/2020

02.04.2019 | Original Article

Bioenergy with carbon capture and storage: are short-term issues set aside?

verfasst von: Audrey Laude

Erschienen in: Mitigation and Adaptation Strategies for Global Change | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Negative emission technologies (NETs) are a set of technologies that could retrieve greenhouse gases from the atmosphere. NETs could dramatically contribute to maintaining the temperature increase to within the limit of 2 °C or even 1.5 °C. Bioenergy with carbon capture and storage (BECCS) is one of the most studied NETs. BECCS captures carbon dioxide (CO2) emissions coming from a bioenergy plant—e.g., electricity, biofuels, and hydrogen—and stores those emissions in a geologic reservoir, typically a saline aquifer. The purpose of this article is to investigate whether a research community exists on BECCS, and whether it is aligned with research priorities. To do so, a bibliometric analysis is conducted based on author collaborations on BECCS in academic journals between 2001 and 2017. The co-authorship network shows that BECCS research is largely based on the integrated assessment model (IAM) research community. These models analyze how power and transportation systems evolve under a climate constraint in the long run, e.g., until 2100. Such a focus has advantages and drawbacks. On the one hand, it helps to build a common vision of the technology and possible roadmaps. On the other hand, I highlight that the implementation features of BECCS in the near future are insufficiently assessed, e.g., techno-economic analyses, business models, local-scale assessments, and comparison with other NETs. These issues are marginal in the network, whereas long-term analyses are at its core. Future research programmes should better include them to avoid a considerable disappointment about the real potential of BECCS.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akgul O, Mac Dowell N, Papageorgiou LG, Shah N (2014) A mixed integer nonlinear programming (MINLP) supply chain optimization framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK. Int J Greenhouse Gas Control 28:189–202CrossRef Akgul O, Mac Dowell N, Papageorgiou LG, Shah N (2014) A mixed integer nonlinear programming (MINLP) supply chain optimization framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK. Int J Greenhouse Gas Control 28:189–202CrossRef
Zurück zum Zitat Al-Ansari T, Korre A, Shah N (2014) Integrated modelling of the energy, water and food nexus to enhance the environmental performance of food production systems. In: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014). American center for life cycle assessment, San Francisco, California, USA, pp 1–10 Al-Ansari T, Korre A, Shah N (2014) Integrated modelling of the energy, water and food nexus to enhance the environmental performance of food production systems. In: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014). American center for life cycle assessment, San Francisco, California, USA, pp 1–10
Zurück zum Zitat Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proc Natl Acad Sci 107:12107–12109CrossRef Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proc Natl Acad Sci 107:12107–12109CrossRef
Zurück zum Zitat Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31:961–976CrossRef Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31:961–976CrossRef
Zurück zum Zitat Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Chang 74:47–79CrossRef Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Chang 74:47–79CrossRef
Zurück zum Zitat Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, den Elzen KMGJ, Möllersten K, Larson ED (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Chang 100:195–202CrossRef Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, den Elzen KMGJ, Möllersten K, Larson ED (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Chang 100:195–202CrossRef
Zurück zum Zitat Bellamy R, Chilvers J, Vaughan NE, Lenton TM (2012) A review of climate geoengineering appraisals. Wiley Interdiscip Rev Clim Chang 3:597–615CrossRef Bellamy R, Chilvers J, Vaughan NE, Lenton TM (2012) A review of climate geoengineering appraisals. Wiley Interdiscip Rev Clim Chang 3:597–615CrossRef
Zurück zum Zitat Belter CW, Seidel DJ (2013) A bibliometric analysis of climate engineering research. Wiley Interdiscip. Rev Clim Change 4:417–427 Belter CW, Seidel DJ (2013) A bibliometric analysis of climate engineering research. Wiley Interdiscip. Rev Clim Change 4:417–427
Zurück zum Zitat Boucher O, Forster PM, Gruber N, Ha-Duong M, Lawrence MG, Lenton TM, Maas A, Vaughan NE (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdiscip Rev Clim Chang 5:23–35CrossRef Boucher O, Forster PM, Gruber N, Ha-Duong M, Lawrence MG, Lenton TM, Maas A, Vaughan NE (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdiscip Rev Clim Chang 5:23–35CrossRef
Zurück zum Zitat Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Chang 11:343–375CrossRef Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Chang 11:343–375CrossRef
Zurück zum Zitat Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N, Le Quéré C, Raupach MR, Sharifi A, Smith P, Yamagata Y (2014) Betting on negative emissions. Nat Clim Chang 4:850–853CrossRef Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N, Le Quéré C, Raupach MR, Sharifi A, Smith P, Yamagata Y (2014) Betting on negative emissions. Nat Clim Chang 4:850–853CrossRef
Zurück zum Zitat Fuss S, Jones CD, Kraxner F, Peters GP, Smith P, Tavoni M, van Vuuren DP, Canadell JG, Jackson RB, Milne J, Moreira JR, Nakicenovic N, Sharifi A, Yamagata Y (2016) Research priorities for negative emissions. Environ Res Lett 11:115007CrossRef Fuss S, Jones CD, Kraxner F, Peters GP, Smith P, Tavoni M, van Vuuren DP, Canadell JG, Jackson RB, Milne J, Moreira JR, Nakicenovic N, Sharifi A, Yamagata Y (2016) Research priorities for negative emissions. Environ Res Lett 11:115007CrossRef
Zurück zum Zitat Gibon T, Hertwich EG, Arvesen A, Singh B, Verones F (2017) Health benefits, ecological threats of low-carbon electricity. Environ Res Lett 12:034023CrossRef Gibon T, Hertwich EG, Arvesen A, Singh B, Verones F (2017) Health benefits, ecological threats of low-carbon electricity. Environ Res Lett 12:034023CrossRef
Zurück zum Zitat Goyal S, van der Leij MJ, Moraga-González JL (2006) Economics: an emerging small world. J Polit Econ 114:403–412CrossRef Goyal S, van der Leij MJ, Moraga-González JL (2006) Economics: an emerging small world. J Polit Econ 114:403–412CrossRef
Zurück zum Zitat Greene CH, Huntley ME, Archibald I, Gerber LN, Sills DL, Granados J, Beal CM, Walsh MJ (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earths Future 5:278–284CrossRef Greene CH, Huntley ME, Archibald I, Gerber LN, Sills DL, Granados J, Beal CM, Walsh MJ (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earths Future 5:278–284CrossRef
Zurück zum Zitat Hailey AK, Meerman JC, Larson ED, Loo Y-L (2016) Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas. Appl Energy 183:1722–1730CrossRef Hailey AK, Meerman JC, Larson ED, Loo Y-L (2016) Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas. Appl Energy 183:1722–1730CrossRef
Zurück zum Zitat Haunschild R, Bornmann L, Marx W (2016) Climate change research in view of bibliometrics. PLoS One 11:e0160393CrossRef Haunschild R, Bornmann L, Marx W (2016) Climate change research in view of bibliometrics. PLoS One 11:e0160393CrossRef
Zurück zum Zitat Herzog H (2016) Lessons learned from CCS demonstration and large pilot projects, MIT energy initiative working paper MITEI-WP-2016-06 Herzog H (2016) Lessons learned from CCS demonstration and large pilot projects, MIT energy initiative working paper MITEI-WP-2016-06
Zurück zum Zitat IEA (2013) Technology roadmap—carbon capture and storage. OECD/IEA, Paris IEA (2013) Technology roadmap—carbon capture and storage. OECD/IEA, Paris
Zurück zum Zitat IEA (2016) Twenty years of carbon capture storage. OECD/IEA, Paris IEA (2016) Twenty years of carbon capture storage. OECD/IEA, Paris
Zurück zum Zitat IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York
Zurück zum Zitat Jackson RB, Canadell JG, Fuss S, Milne J, Nakicenovic N, Tavoni M (2017) Focus on negative emissions. Environ Res Lett 12:110201CrossRef Jackson RB, Canadell JG, Fuss S, Milne J, Nakicenovic N, Tavoni M (2017) Focus on negative emissions. Environ Res Lett 12:110201CrossRef
Zurück zum Zitat Jankó F, Móricz N, Papp Vancsó J (2014) Reviewing the climate change reviewers: exploring controversy through report references and citations. Geoforum 56:17–34CrossRef Jankó F, Móricz N, Papp Vancsó J (2014) Reviewing the climate change reviewers: exploring controversy through report references and citations. Geoforum 56:17–34CrossRef
Zurück zum Zitat Khorshidi Z, Ho M, Wiley D (2015) Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants. Int J Greenhouse Gas Control 32:24–36CrossRef Khorshidi Z, Ho M, Wiley D (2015) Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants. Int J Greenhouse Gas Control 32:24–36CrossRef
Zurück zum Zitat Kraxner F, Aoki K, Leduc S, Kindermann G, Fuss S, Yang J, Yamagata Y, Tak K-I, Obersteiner M (2014a) BECCS in South Korea—analyzing the negative emissions potential of bioenergy as a mitigation tool. Renew Energy 61:102–108CrossRef Kraxner F, Aoki K, Leduc S, Kindermann G, Fuss S, Yang J, Yamagata Y, Tak K-I, Obersteiner M (2014a) BECCS in South Korea—analyzing the negative emissions potential of bioenergy as a mitigation tool. Renew Energy 61:102–108CrossRef
Zurück zum Zitat Kraxner F, Leduc S, Fuss S, Aoki K, Kindermann G, Yamagata Y (2014b) Energy resilient solutions for Japan—a BECCS case study. Energy Procedia 61:2791–2796CrossRef Kraxner F, Leduc S, Fuss S, Aoki K, Kindermann G, Yamagata Y (2014b) Energy resilient solutions for Japan—a BECCS case study. Energy Procedia 61:2791–2796CrossRef
Zurück zum Zitat Kriegler E, Mouratiadou I, Luderer G, Edmonds J, Edenhofer O (2016) Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection. Clim Chang 136:1–6CrossRef Kriegler E, Mouratiadou I, Luderer G, Edmonds J, Edenhofer O (2016) Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection. Clim Chang 136:1–6CrossRef
Zurück zum Zitat Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L, Edmonds J, Fawcett A, Luderer G, Riahi K, Richels R, Rose SK, Tavoni M, van Vuuren DP (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Chang 123:353–367CrossRef Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L, Edmonds J, Fawcett A, Luderer G, Riahi K, Richels R, Rose SK, Tavoni M, van Vuuren DP (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Chang 123:353–367CrossRef
Zurück zum Zitat Kumar S (2015) Co-authorship networks: a review of the literature. Aslib J Inf Manag 67:55–73CrossRef Kumar S (2015) Co-authorship networks: a review of the literature. Aslib J Inf Manag 67:55–73CrossRef
Zurück zum Zitat Li J, Wang M-H, Ho Y-S (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77:13–20CrossRef Li J, Wang M-H, Ho Y-S (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77:13–20CrossRef
Zurück zum Zitat Linnér B-O, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscip Rev Clim Chang 6:255–268CrossRef Linnér B-O, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscip Rev Clim Chang 6:255–268CrossRef
Zurück zum Zitat Liu G, Williams RH, Larson ED, Kreutz TG (2011) Design/economics of low-carbon power generation from natural gas and biomass with synthetic fuels co-production. Energy Procedia 4:1989–1996CrossRef Liu G, Williams RH, Larson ED, Kreutz TG (2011) Design/economics of low-carbon power generation from natural gas and biomass with synthetic fuels co-production. Energy Procedia 4:1989–1996CrossRef
Zurück zum Zitat Lomax G, Lenton TM, Adeosun A, Workman M (2015) Investing in negative emissions. Nat Clim Chang 5:498–500CrossRef Lomax G, Lenton TM, Adeosun A, Workman M (2015) Investing in negative emissions. Nat Clim Chang 5:498–500CrossRef
Zurück zum Zitat Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, van Meijl H, Hasegawa T, Popp A, Schmitz C, Tabeau A, Valin H, Willenbockel D, Wise M (2014) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45:103–116CrossRef Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, van Meijl H, Hasegawa T, Popp A, Schmitz C, Tabeau A, Valin H, Willenbockel D, Wise M (2014) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45:103–116CrossRef
Zurück zum Zitat Luckow P, Wise MA, Dooley JJ, Kim SH (2010) Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int J Greenhouse Gas Control 4:865–877CrossRef Luckow P, Wise MA, Dooley JJ, Kim SH (2010) Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int J Greenhouse Gas Control 4:865–877CrossRef
Zurück zum Zitat Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945CrossRef Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945CrossRef
Zurück zum Zitat Melin G, Persson O (1996) Studying research collaboration using co-authorships. Scientometrics 36:363–377CrossRef Melin G, Persson O (1996) Studying research collaboration using co-authorships. Scientometrics 36:363–377CrossRef
Zurück zum Zitat Milgram S (1967) The small-world problem. Psychol Today 1:61–67 Milgram S (1967) The small-world problem. Psychol Today 1:61–67
Zurück zum Zitat Minx JC, Lamb WF, Callaghan MW, Bornmann L, Fuss S (2017) Fast growing research on negative emissions. Environ Res Lett 12:035007CrossRef Minx JC, Lamb WF, Callaghan MW, Bornmann L, Fuss S (2017) Fast growing research on negative emissions. Environ Res Lett 12:035007CrossRef
Zurück zum Zitat Möllersten K, Yan J (2001) Economic evaluation of biomass-based energy systems with CO2 capture and sequestration in Kraft pulp mills—the influence of the price of CO2 emission quota world. Resour Rev 13:509–525 Möllersten K, Yan J (2001) Economic evaluation of biomass-based energy systems with CO2 capture and sequestration in Kraft pulp mills—the influence of the price of CO2 emission quota world. Resour Rev 13:509–525
Zurück zum Zitat Möllersten K, Yan JR, Moreira J (2003) Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25:273–285CrossRef Möllersten K, Yan JR, Moreira J (2003) Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25:273–285CrossRef
Zurück zum Zitat Newman MEJ (2004) Co-authorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205CrossRef Newman MEJ (2004) Co-authorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205CrossRef
Zurück zum Zitat Obersteiner M, Azar C, Kossmeier S, Mechler R, Moellersten K, Nilsson S, Read P, Yamagata Y, Yan J (2001) Managing climate risk. Science 294:786–787CrossRef Obersteiner M, Azar C, Kossmeier S, Mechler R, Moellersten K, Nilsson S, Read P, Yamagata Y, Yan J (2001) Managing climate risk. Science 294:786–787CrossRef
Zurück zum Zitat Oldham P, Szerszynski B, Stilgoe J, Brown C, Eacott B, Yuille A (2014) Mapping the landscape of climate engineering. Philos Trans R Soc A Math Phys Eng Sci 372:20140065–20140065CrossRef Oldham P, Szerszynski B, Stilgoe J, Brown C, Eacott B, Yuille A (2014) Mapping the landscape of climate engineering. Philos Trans R Soc A Math Phys Eng Sci 372:20140065–20140065CrossRef
Zurück zum Zitat Oreggioni GD, Singh B, Cherubini F, Guest G, Lausselet C, Luberti M, Ahn H, Strømman AH (2017) Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int J Greenhouse Gas Control 57:162–172CrossRef Oreggioni GD, Singh B, Cherubini F, Guest G, Lausselet C, Luberti M, Ahn H, Strømman AH (2017) Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int J Greenhouse Gas Control 57:162–172CrossRef
Zurück zum Zitat Pang M, Zhang L, Liang S, Liu G, Wang C, Hao Y, Wang Y, Xu M (2017) Trade-off between carbon reduction benefits and ecological costs of biomass-based power plants with carbon capture and storage (CCS) in China. J Clean Prod 144:279–286CrossRef Pang M, Zhang L, Liang S, Liu G, Wang C, Hao Y, Wang Y, Xu M (2017) Trade-off between carbon reduction benefits and ecological costs of biomass-based power plants with carbon capture and storage (CCS) in China. J Clean Prod 144:279–286CrossRef
Zurück zum Zitat Pasgaard M, Strange N (2013) A quantitative analysis of the causes of the global climate change research distribution. Glob Environ Chang 23:1684–1693CrossRef Pasgaard M, Strange N (2013) A quantitative analysis of the causes of the global climate change research distribution. Glob Environ Chang 23:1684–1693CrossRef
Zurück zum Zitat Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:034017CrossRef Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:034017CrossRef
Zurück zum Zitat Porter RTJ, Fairweather M, Pourkashanian M, Woolley RM (2015) The range and level of impurities in CO2 streams from different carbon capture sources. Int J Greenhouse Gas Control 36:161–174CrossRef Porter RTJ, Fairweather M, Pourkashanian M, Woolley RM (2015) The range and level of impurities in CO2 streams from different carbon capture sources. Int J Greenhouse Gas Control 36:161–174CrossRef
Zurück zum Zitat Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, KC S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168CrossRef Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, KC S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168CrossRef
Zurück zum Zitat Rochedo P, Costa I, Império C, Hoffmann B, Merschmann P, Oliveira C, Szklo S, Schaeffer R (2016) Carbon capture potential and cost in Brazil. J Clean Prod 131:280–295CrossRef Rochedo P, Costa I, Império C, Hoffmann B, Merschmann P, Oliveira C, Szklo S, Schaeffer R (2016) Carbon capture potential and cost in Brazil. J Clean Prod 131:280–295CrossRef
Zurück zum Zitat Sharifzadeh M, Wang L, Shah N (2015) Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renew Sust Energ Rev 47:151–161CrossRef Sharifzadeh M, Wang L, Shah N (2015) Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renew Sust Energ Rev 47:151–161CrossRef
Zurück zum Zitat Sithole H, Cockerill TT, Hughes KJ, Ingham DB, Ma L, Porter RTJ, Pourkashanian M (2016) Developing an optimal electricity generation mix for the UK 2050 future. Energy 100:363–373CrossRef Sithole H, Cockerill TT, Hughes KJ, Ingham DB, Ma L, Porter RTJ, Pourkashanian M (2016) Developing an optimal electricity generation mix for the UK 2050 future. Energy 100:363–373CrossRef
Zurück zum Zitat Stanhill G (2001) The growth of climate change science: a scientometric study. Clim Chang 48:515–524CrossRef Stanhill G (2001) The growth of climate change science: a scientometric study. Clim Chang 48:515–524CrossRef
Zurück zum Zitat Tavoni M, Tol RSJ (2010) Counting only the hits? The risk of underestimating the costs of stringent climate policy. Clim Chang 100:769–778CrossRef Tavoni M, Tol RSJ (2010) Counting only the hits? The risk of underestimating the costs of stringent climate policy. Clim Chang 100:769–778CrossRef
Zurück zum Zitat Tsiropoulos I, Hoefnagels R, van den Broek M, Patel MK, Faaij APC (2017) The role of bioenergy and biochemicals in CO2 mitigation through the energy system—a scenario analysis for the Netherlands. GCB Bioenergy 9:1489–1509CrossRef Tsiropoulos I, Hoefnagels R, van den Broek M, Patel MK, Faaij APC (2017) The role of bioenergy and biochemicals in CO2 mitigation through the energy system—a scenario analysis for the Netherlands. GCB Bioenergy 9:1489–1509CrossRef
Zurück zum Zitat Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renew Energy 32:1006–1019CrossRef Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renew Energy 32:1006–1019CrossRef
Zurück zum Zitat van der Zwaan B, Kober T, Calderon S et al (2014) Energy technology roll-out for climate change mitigation: a multi-model study for Latin America. Energy Econ 56:526–542CrossRef van der Zwaan B, Kober T, Calderon S et al (2014) Energy technology roll-out for climate change mitigation: a multi-model study for Latin America. Energy Econ 56:526–542CrossRef
Zurück zum Zitat van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C—insights from integrated assessment modelling. Clim Chang 118:15–27CrossRef van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C—insights from integrated assessment modelling. Clim Chang 118:15–27CrossRef
Zurück zum Zitat van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011a) Representative concentration pathways: an overview. Clim Chang 109:5–31CrossRef van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011a) Representative concentration pathways: an overview. Clim Chang 109:5–31CrossRef
Zurück zum Zitat van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011b) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109:95–116CrossRef van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011b) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109:95–116CrossRef
Zurück zum Zitat Vaughan NE, Gough C (2016) Expert assessment concludes negative emissions scenarios may not deliver. Environ Res Lett 11:095003CrossRef Vaughan NE, Gough C (2016) Expert assessment concludes negative emissions scenarios may not deliver. Environ Res Lett 11:095003CrossRef
Zurück zum Zitat Wallquist L, Seigo SLO, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83CrossRef Wallquist L, Seigo SLO, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83CrossRef
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRef
Zurück zum Zitat Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56CrossRef Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56CrossRef
Metadaten
Titel
Bioenergy with carbon capture and storage: are short-term issues set aside?
verfasst von
Audrey Laude
Publikationsdatum
02.04.2019
Verlag
Springer Netherlands
Erschienen in
Mitigation and Adaptation Strategies for Global Change / Ausgabe 2/2020
Print ISSN: 1381-2386
Elektronische ISSN: 1573-1596
DOI
https://doi.org/10.1007/s11027-019-09856-7

Weitere Artikel der Ausgabe 2/2020

Mitigation and Adaptation Strategies for Global Change 2/2020 Zur Ausgabe