Skip to main content

2018 | OriginalPaper | Buchkapitel

13. Biofuels from Microalgae: Photobioreactor Exhaust Gases in Oxycombustion Systems

verfasst von : Ihana Aguiar Severo, Juliano Smanioto Barin, Roger Wagner, Leila Queiroz Zepka, Eduardo Jacob-Lopes

Erschienen in: Energy from Microalgae

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this chapter is to present a comprehensive overview of integrated bio-oxycombustion systems with photobioreactors. Divided into seven distinct topics, the chapter discusses issues related to fundamentals of oxycombustion, the operational implications for oxycombustion-enhanced performance, oxygen produced by photosynthesis, volatile organic compounds as energy source, photobioreactors design, the process integration in bio-oxycombustion systems, and the hurdles of bio-oxycombustion technology, summarizing a range of useful strategies directed to the sustainable development of industrial combustion systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Banaszkiewicz, T., et al. (2014). Comparative analysis of oxygen production for oxy-combustion application. Energy Procedia, 51, 127–134.CrossRef Banaszkiewicz, T., et al. (2014). Comparative analysis of oxygen production for oxy-combustion application. Energy Procedia, 51, 127–134.CrossRef
Zurück zum Zitat Barber, J. (2017). A mechanism for water splitting and oxygen production in photosynthesis. Nature Plants, 3, 17041.CrossRef Barber, J. (2017). A mechanism for water splitting and oxygen production in photosynthesis. Nature Plants, 3, 17041.CrossRef
Zurück zum Zitat Baukal, C. E. (2013). Oxygen-enhanced combustion (2nd ed.). Boca Raton, FL: CRC Press.CrossRef Baukal, C. E. (2013). Oxygen-enhanced combustion (2nd ed.). Boca Raton, FL: CRC Press.CrossRef
Zurück zum Zitat Bergene, T. (1996). The efficiency and physical principles of photolysis of water by microalgae. International Journal of Hydrogen Energy, 21, 189–194.CrossRef Bergene, T. (1996). The efficiency and physical principles of photolysis of water by microalgae. International Journal of Hydrogen Energy, 21, 189–194.CrossRef
Zurück zum Zitat Bernal, O. I., et al. (2014). Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite “leaves”. Biotechnology and Bioengineering, 111, 1993–2008.CrossRef Bernal, O. I., et al. (2014). Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite “leaves”. Biotechnology and Bioengineering, 111, 1993–2008.CrossRef
Zurück zum Zitat Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313–321.CrossRef Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313–321.CrossRef
Zurück zum Zitat Budzianowski, W. M., & Postawa, K. (2016). Total chain integration of sustainable biorefinery systems. Applied Energy, 184, 1432–1446.CrossRef Budzianowski, W. M., & Postawa, K. (2016). Total chain integration of sustainable biorefinery systems. Applied Energy, 184, 1432–1446.CrossRef
Zurück zum Zitat Buhre, B. J. P., et al. (2005). Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31, 283–307.CrossRef Buhre, B. J. P., et al. (2005). Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31, 283–307.CrossRef
Zurück zum Zitat Burris, J. E. (1981). Effects of oxygen and inorganic carbon concentrations on the photosynthetic quotients of marine algae. Marine Biology, 65, 215–219.CrossRef Burris, J. E. (1981). Effects of oxygen and inorganic carbon concentrations on the photosynthetic quotients of marine algae. Marine Biology, 65, 215–219.CrossRef
Zurück zum Zitat Cengel, Y. A. (2003). Heat transfer: A practical approach (2nd ed.). New York: McGraw-Hill. Cengel, Y. A. (2003). Heat transfer: A practical approach (2nd ed.). New York: McGraw-Hill.
Zurück zum Zitat Chen, C., et al. (2012a). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571.CrossRef Chen, C., et al. (2012a). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571.CrossRef
Zurück zum Zitat Chen, L., et al. (2012b). Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 38, 156–214.CrossRef Chen, L., et al. (2012b). Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 38, 156–214.CrossRef
Zurück zum Zitat Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRef Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRef
Zurück zum Zitat Chorowski, M., & Gizicki, W. (2015). Technical and economic aspects of oxygen separation for oxy-fuel purposes. Archives of Thermodynamics, 36, 157–10. Chorowski, M., & Gizicki, W. (2015). Technical and economic aspects of oxygen separation for oxy-fuel purposes. Archives of Thermodynamics, 36, 157–10.
Zurück zum Zitat Cogne, G., et al. (2005). Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnology Progress, 21, 741–750.CrossRef Cogne, G., et al. (2005). Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnology Progress, 21, 741–750.CrossRef
Zurück zum Zitat Daood, S. S., et al. (2012). Deep-staged, oxygen enriched combustion of coal. Fuel, 101, 187–196.CrossRef Daood, S. S., et al. (2012). Deep-staged, oxygen enriched combustion of coal. Fuel, 101, 187–196.CrossRef
Zurück zum Zitat Dudareva, N. et al. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16–32.CrossRef Dudareva, N. et al. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16–32.CrossRef
Zurück zum Zitat Eriksen, N. T., et al. (2007). On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gastight photobioreactor. Journal Applied Phycology, 19, 161–174.CrossRef Eriksen, N. T., et al. (2007). On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gastight photobioreactor. Journal Applied Phycology, 19, 161–174.CrossRef
Zurück zum Zitat Eroglu, E., & Melis, A. (2010). Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource Technology, 101, 2359–2366.CrossRef Eroglu, E., & Melis, A. (2010). Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource Technology, 101, 2359–2366.CrossRef
Zurück zum Zitat Fay, P. (1983). The blue-greens (cyanophyta-cyanobacteria) (5ª ed., p. 88). London: Edward Arnold Publishers, Studies in Biology 160. Fay, P. (1983). The blue-greens (cyanophyta-cyanobacteria) (5ª ed., p. 88). London: Edward Arnold Publishers, Studies in Biology 160.
Zurück zum Zitat Fink, P. (2007). Ecological functions of volatile organic compounds in aquatic systems. Marine and Freshwater Behaviour and Physiology, 40, 155–168.CrossRef Fink, P. (2007). Ecological functions of volatile organic compounds in aquatic systems. Marine and Freshwater Behaviour and Physiology, 40, 155–168.CrossRef
Zurück zum Zitat Gładysz, P., et al. (2017). Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant. Energy (in press). Gładysz, P., et al. (2017). Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant. Energy (in press).
Zurück zum Zitat Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science and Technology, 41, 1415–1421. Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science and Technology, 41, 1415–1421.
Zurück zum Zitat Griffiths, J. F., & Barnard, J. A. (1995). Flame and combustion (3rd ed.). London, UK: Chapman and Hall.CrossRef Griffiths, J. F., & Barnard, J. A. (1995). Flame and combustion (3rd ed.). London, UK: Chapman and Hall.CrossRef
Zurück zum Zitat Hasegawa, M., et al. (2012). Volatile organic compounds derived from 2-keto-acid decarboxylase in Microcystis aeruginosa. Microbes and Environments, 27, 525–528.CrossRef Hasegawa, M., et al. (2012). Volatile organic compounds derived from 2-keto-acid decarboxylase in Microcystis aeruginosa. Microbes and Environments, 27, 525–528.CrossRef
Zurück zum Zitat Heldt, H.-W., & Piechulla, B. (2011). Plant biochemistry (4ª ed., p. 618). German edition: Academic Press in an imprint of Elsevier.CrossRef Heldt, H.-W., & Piechulla, B. (2011). Plant biochemistry (4ª ed., p. 618). German edition: Academic Press in an imprint of Elsevier.CrossRef
Zurück zum Zitat Higginbotham, P., et al. (2011). Oxygen supply for oxyfuel CO2 capture. International Journal of Greenhouse Gas Control, 55, S194–S203.CrossRef Higginbotham, P., et al. (2011). Oxygen supply for oxyfuel CO2 capture. International Journal of Greenhouse Gas Control, 55, S194–S203.CrossRef
Zurück zum Zitat Holdt, S. L., et al. (2013). A novel closed system bubble column photobioreactor for detailed characterisation of micro- and macroalgal growth. Journal of Applied Phycology, 26, 825–835.CrossRef Holdt, S. L., et al. (2013). A novel closed system bubble column photobioreactor for detailed characterisation of micro- and macroalgal growth. Journal of Applied Phycology, 26, 825–835.CrossRef
Zurück zum Zitat Huang, Q., et al. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.CrossRef Huang, Q., et al. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.CrossRef
Zurück zum Zitat IHEA. Industrial Heating Equipment Association. (2007). Improving process heating system performance: A sourcebook for industry. Prepared for the United States Department of Energy Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program. IHEA. Industrial Heating Equipment Association. (2007). Improving process heating system performance: A sourcebook for industry. Prepared for the United States Department of Energy Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program.
Zurück zum Zitat Jacob-Lopes, E., et al. (2015). Microalgal biorefineries, biomass production and uses (Chap. 5). In E. Atazadeh (Ed.), InTech. Jacob-Lopes, E., et al. (2015). Microalgal biorefineries, biomass production and uses (Chap. 5). In E. Atazadeh (Ed.), InTech.
Zurück zum Zitat Jacob-Lopes, E., et al. (2016). Bioprocesso de conversão de dióxido de carbono de emissões industriais, bioprodutos, seus usos e fotobiorreator híbrido. Patent WO 2016041028 A1. Jacob-Lopes, E., et al. (2016). Bioprocesso de conversão de dióxido de carbono de emissões industriais, bioprodutos, seus usos e fotobiorreator híbrido. Patent WO 2016041028 A1.
Zurück zum Zitat Jacob-Lopes, E., et al. (2017). Process and system for re-using carbon dioxide transformed by photosynthesis into oxygen and hydrocarbons used in an integrated manner to increase the thermal efficiency of combustion systems. Patent WO 2017/112984 A1. Jacob-Lopes, E., et al. (2017). Process and system for re-using carbon dioxide transformed by photosynthesis into oxygen and hydrocarbons used in an integrated manner to increase the thermal efficiency of combustion systems. Patent WO 2017/112984 A1.
Zurück zum Zitat Jacob-Lopes, E., & Franco, T. T. (2013). From oil refinery to microalgal biorefinery. Journal of CO 2 Utilization, 2, 1–7.CrossRef Jacob-Lopes, E., & Franco, T. T. (2013). From oil refinery to microalgal biorefinery. Journal of CO 2 Utilization, 2, 1–7.CrossRef
Zurück zum Zitat Jacob-Lopes, E., et al. (2009). Development of operational strategies to remove carbon dioxide in photobioreactors. Chemical Engineering Journal, 153, 120–126.CrossRef Jacob-Lopes, E., et al. (2009). Development of operational strategies to remove carbon dioxide in photobioreactors. Chemical Engineering Journal, 153, 120–126.CrossRef
Zurück zum Zitat Jacob-Lopes, E., et al. (2010). Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 51, 894–900.CrossRef Jacob-Lopes, E., et al. (2010). Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 51, 894–900.CrossRef
Zurück zum Zitat Jajesniak, P., et al. (2014). Carbon dioxide capture and utilization using biological systems: Opportunities and challenges. Bioprocessing & Biotechniques, 4, 3. Jajesniak, P., et al. (2014). Carbon dioxide capture and utilization using biological systems: Opportunities and challenges. Bioprocessing & Biotechniques, 4, 3.
Zurück zum Zitat Khalil, A. E. E., & Gupta, A. K. (2017). The role of CO2 on oxy-colorless distributed combustion. Applied Energy, 188, 466–474.CrossRef Khalil, A. E. E., & Gupta, A. K. (2017). The role of CO2 on oxy-colorless distributed combustion. Applied Energy, 188, 466–474.CrossRef
Zurück zum Zitat Kliphuis, A. M. J., et al. (2010). Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnology Progress, 26, 687–696.CrossRef Kliphuis, A. M. J., et al. (2010). Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnology Progress, 26, 687–696.CrossRef
Zurück zum Zitat Koytsoumpa, E. I., et al. (2017). The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids (in press). Koytsoumpa, E. I., et al. (2017). The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids (in press).
Zurück zum Zitat Lacava, P. T., et al. (2006). Thermal analysis of an enriched flame incinerator for aqueous residues. Energy, 31, 528–545.CrossRef Lacava, P. T., et al. (2006). Thermal analysis of an enriched flame incinerator for aqueous residues. Energy, 31, 528–545.CrossRef
Zurück zum Zitat Leung, D. Y. C., et al. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–444.CrossRef Leung, D. Y. C., et al. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–444.CrossRef
Zurück zum Zitat Medipally, S. R., et al. (2015). Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International, 2015, 519513.CrossRef Medipally, S. R., et al. (2015). Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International, 2015, 519513.CrossRef
Zurück zum Zitat Molina-Grima, E., et al. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.CrossRef Molina-Grima, E., et al. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.CrossRef
Zurück zum Zitat Moncada, J., et al. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116, 122–134.CrossRef Moncada, J., et al. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116, 122–134.CrossRef
Zurück zum Zitat Muñoz, J., et al. (2004). Effects of ionic strength on the production of short chain volatile hydrocarbons by Dunaliella salina (Teodoresco). Chemosphere, 54, 1267–1271.CrossRef Muñoz, J., et al. (2004). Effects of ionic strength on the production of short chain volatile hydrocarbons by Dunaliella salina (Teodoresco). Chemosphere, 54, 1267–1271.CrossRef
Zurück zum Zitat Normann, F., et al. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35, 385–397.CrossRef Normann, F., et al. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35, 385–397.CrossRef
Zurück zum Zitat Olajire, A. A. (2010). CO2 capture and separation technologies for end-of-pipe applications—a review. Energy, 35, 2610–2628.CrossRef Olajire, A. A. (2010). CO2 capture and separation technologies for end-of-pipe applications—a review. Energy, 35, 2610–2628.CrossRef
Zurück zum Zitat Pawar, S. (2016). Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable and Sustainable Energy Reviews, 62, 640–653.CrossRef Pawar, S. (2016). Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable and Sustainable Energy Reviews, 62, 640–653.CrossRef
Zurück zum Zitat Raeesossadati, M. J., et al. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6, 8–85.CrossRef Raeesossadati, M. J., et al. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6, 8–85.CrossRef
Zurück zum Zitat Raso, S., et al. (2012). Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology, 24, 863–871.CrossRef Raso, S., et al. (2012). Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology, 24, 863–871.CrossRef
Zurück zum Zitat Razzak, S. A., et al. (2017). Biological CO2 fixation with production of microalgae in wastewater—a review. Renewable and Sustainable Energy Reviews, 76, 379–390.CrossRef Razzak, S. A., et al. (2017). Biological CO2 fixation with production of microalgae in wastewater—a review. Renewable and Sustainable Energy Reviews, 76, 379–390.CrossRef
Zurück zum Zitat Santos, A. B., et al. (2016). Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. Journal of Applied Phycology, 28, 1561–1570.CrossRef Santos, A. B., et al. (2016). Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. Journal of Applied Phycology, 28, 1561–1570.CrossRef
Zurück zum Zitat Scheffknecht, G., et al. (2011). Oxy-fuel coal combustion—a review of the current state-of-the-art. International Journal of Greenhouse Gas Control, 5, 16–35.CrossRef Scheffknecht, G., et al. (2011). Oxy-fuel coal combustion—a review of the current state-of-the-art. International Journal of Greenhouse Gas Control, 5, 16–35.CrossRef
Zurück zum Zitat Schirmer, A. et al. (2010). Microbial Biosynthesis of Alkanes. Science, 329, 559–562.CrossRef Schirmer, A. et al. (2010). Microbial Biosynthesis of Alkanes. Science, 329, 559–562.CrossRef
Zurück zum Zitat Smith, L. M., et al. (2012). Quantifying variation in water column photosynthetic quotient with changing field conditions in Narragansett Bay, RI, USA. Journal of Plankton Research, 34, 437–442.CrossRef Smith, L. M., et al. (2012). Quantifying variation in water column photosynthetic quotient with changing field conditions in Narragansett Bay, RI, USA. Journal of Plankton Research, 34, 437–442.CrossRef
Zurück zum Zitat Spilling, K., et al. (2015). Interaction effects of light, temperature and nutrient limitations (N, P and Si) on growth, stoichiometry and photosynthetic parameters of the cold-water diatom Chaetoceros wighamii. PLoS One, 10, 1–18.CrossRef Spilling, K., et al. (2015). Interaction effects of light, temperature and nutrient limitations (N, P and Si) on growth, stoichiometry and photosynthetic parameters of the cold-water diatom Chaetoceros wighamii. PLoS One, 10, 1–18.CrossRef
Zurück zum Zitat Stanger, R., & Wall, T. (2011). Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Progress in Energy and Combustion Science, 37, 69–88.CrossRef Stanger, R., & Wall, T. (2011). Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Progress in Energy and Combustion Science, 37, 69–88.CrossRef
Zurück zum Zitat Stanger, R., et al. (2015). Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 40, 55–125.CrossRef Stanger, R., et al. (2015). Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 40, 55–125.CrossRef
Zurück zum Zitat Sun, S.-M., et al. (2012). Volatile compounds of the green alga, Capsosiphon fulvescens. Journal of Applied Phycology, 24, 1003–1013.CrossRef Sun, S.-M., et al. (2012). Volatile compounds of the green alga, Capsosiphon fulvescens. Journal of Applied Phycology, 24, 1003–1013.CrossRef
Zurück zum Zitat Tao, Q., et al. (2017). Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Research, 21, 9–15.CrossRef Tao, Q., et al. (2017). Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Research, 21, 9–15.CrossRef
Zurück zum Zitat Toftegaard, M. B., et al. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581–625.CrossRef Toftegaard, M. B., et al. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581–625.CrossRef
Zurück zum Zitat Vasumathi, K. K., et al. (2012). Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews, 16, 5443–5450.CrossRef Vasumathi, K. K., et al. (2012). Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews, 16, 5443–5450.CrossRef
Zurück zum Zitat Wall, T., et al. (2009). An overview on oxyfuel coal combustion—state of the art research and technology development. Chemical Engineering Research and Design, 87, 1003–1016.CrossRef Wall, T., et al. (2009). An overview on oxyfuel coal combustion—state of the art research and technology development. Chemical Engineering Research and Design, 87, 1003–1016.CrossRef
Zurück zum Zitat Wang, B., et al. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.CrossRef Wang, B., et al. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.CrossRef
Zurück zum Zitat Williams, P. J. B., & Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review and analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3, 554–590.CrossRef Williams, P. J. B., & Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review and analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3, 554–590.CrossRef
Zurück zum Zitat Yin, C., & Yan, J. (2016). Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Applied Energy, 162, 742–762.CrossRef Yin, C., & Yan, J. (2016). Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Applied Energy, 162, 742–762.CrossRef
Zurück zum Zitat Zepka, L. Q., et al. (2015). Biogeneration of volatile compounds from microalgae. Chapter: Flavour Generation, 257–260. Zepka, L. Q., et al. (2015). Biogeneration of volatile compounds from microalgae. Chapter: Flavour Generation, 257–260.
Metadaten
Titel
Biofuels from Microalgae: Photobioreactor Exhaust Gases in Oxycombustion Systems
verfasst von
Ihana Aguiar Severo
Juliano Smanioto Barin
Roger Wagner
Leila Queiroz Zepka
Eduardo Jacob-Lopes
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69093-3_13