Skip to main content

2012 | OriginalPaper | Buchkapitel

Biohydrogen Production from Anaerobic Fermentation

verfasst von : Ai-Jie Wang, Guang-Li Cao, Wen-Zong Liu

Erschienen in: Biotechnology in China III: Biofuels and Bioenergy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Significant progress has been achieved in China for biohydrogen production from organic wastes, particularly wastewater and agricultural residues, which are abundantly available in China. This progress is reviewed with a focus on hydrogen-producing bacteria, fermentation processes, and bioreactor configurations. Although dark fermentation is more efficient for hydrogen production, by-products generated during the fermentation not only compromise hydrogen production yield but also inhibit the bacteria. Two strategies, combination of dark fermentation and photofermentation and coupling of dark fermentation with a microbial electrolysis cell, are expected to address this issue and improve hydrogen production as well as substrate utilization, which are also discussed. Finally, challenges and perspectives for biohydrogen production are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185CrossRef Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185CrossRef
2.
Zurück zum Zitat Liu BF, Ren NQ, Ding J, Xie GJ, Cao GL (2009) Enhanced photo-H2 production of R. faecalis RLD-53 by separation of CO2 from reaction system. Bioresour Technol 100:1501–1504CrossRef Liu BF, Ren NQ, Ding J, Xie GJ, Cao GL (2009) Enhanced photo-H2 production of R. faecalis RLD-53 by separation of CO2 from reaction system. Bioresour Technol 100:1501–1504CrossRef
3.
Zurück zum Zitat Zhu X, Xie XW, Liao Q, Wang YZ, Lee DJ (2011) Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture. Bioresour Technol 102(18):8696–8699CrossRef Zhu X, Xie XW, Liao Q, Wang YZ, Lee DJ (2011) Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture. Bioresour Technol 102(18):8696–8699CrossRef
4.
Zurück zum Zitat Shi XY, Yu HQ (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulate. Int J Hydrogen Energy 31:1641–1647CrossRef Shi XY, Yu HQ (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulate. Int J Hydrogen Energy 31:1641–1647CrossRef
5.
Zurück zum Zitat Tian X, Liao Q, Liu W, Wang YZ, Zhu X, Li J, Wang H (2009) Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Int J Hydrogen Energy 34(11):4708–4717CrossRef Tian X, Liao Q, Liu W, Wang YZ, Zhu X, Li J, Wang H (2009) Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Int J Hydrogen Energy 34(11):4708–4717CrossRef
6.
Zurück zum Zitat Liu BF, Xie GJ, Guo WQ, Ding J, Ren NQ (2011) Optimization of photo-hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53. Nat Res 2(1):1–7 Liu BF, Xie GJ, Guo WQ, Ding J, Ren NQ (2011) Optimization of photo-hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53. Nat Res 2(1):1–7
7.
Zurück zum Zitat Wang YJ, Liao Q, Wang YZ, Zhu X, Li J (2011) Effects of flow rate and substrate concentration on the formation and H2 production of photosynthetic bacterial biofilms. Bioresour Technol 102(13):6902–6908CrossRef Wang YJ, Liao Q, Wang YZ, Zhu X, Li J (2011) Effects of flow rate and substrate concentration on the formation and H2 production of photosynthetic bacterial biofilms. Bioresour Technol 102(13):6902–6908CrossRef
8.
Zurück zum Zitat Liao Q, Wang YJ, Wang YZ, Zhu X, Tian X, Li J (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Bioresour Technol 101(14):5315–5324CrossRef Liao Q, Wang YJ, Wang YZ, Zhu X, Tian X, Li J (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Bioresour Technol 101(14):5315–5324CrossRef
9.
Zurück zum Zitat Ding J, Liu BF, Ren NQ, Xing DF, Guo WQ, Xu JF (2009) Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34:3647–3652CrossRef Ding J, Liu BF, Ren NQ, Xing DF, Guo WQ, Xu JF (2009) Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34:3647–3652CrossRef
10.
Zurück zum Zitat Ren NQ, Wang BZ, Huang JC (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428–433CrossRef Ren NQ, Wang BZ, Huang JC (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428–433CrossRef
11.
Zurück zum Zitat Cohen A, van Gemert JM, Zoetemeyer RJ, Breure AM (1984) Main characteristics and stoichiometric spects of acidogenesis of soluble carbohydrate containing wastewater. Proc Biochem 19:228–237 Cohen A, van Gemert JM, Zoetemeyer RJ, Breure AM (1984) Main characteristics and stoichiometric spects of acidogenesis of soluble carbohydrate containing wastewater. Proc Biochem 19:228–237
12.
Zurück zum Zitat Ren N (1994) Principles and controlling strategy of H2 bio-production in organic wastewater treatment. PhD thesis, Harbin University of Architecture and Engineering, Harbin Ren N (1994) Principles and controlling strategy of H2 bio-production in organic wastewater treatment. PhD thesis, Harbin University of Architecture and Engineering, Harbin
13.
Zurück zum Zitat Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56–64CrossRef Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56–64CrossRef
14.
Zurück zum Zitat Pan CM, Fan YT, Zhao P, Hou HW (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energy 33(20):5383–5391CrossRef Pan CM, Fan YT, Zhao P, Hou HW (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energy 33(20):5383–5391CrossRef
15.
Zurück zum Zitat Zhu DL, Wang GC, Qiao HJ, Cai JL (2008) Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge. Int J Hydrogen Energy 33:6116–6123CrossRef Zhu DL, Wang GC, Qiao HJ, Cai JL (2008) Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge. Int J Hydrogen Energy 33:6116–6123CrossRef
16.
Zurück zum Zitat Zhao X, Xing DF, Fu N, Liu BF, Ren NQ (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol 102(18):8432–8436CrossRef Zhao X, Xing DF, Fu N, Liu BF, Ren NQ (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol 102(18):8432–8436CrossRef
17.
Zurück zum Zitat Wang XJ, Ren NQ, Xiang WS, Guo WQ (2007) Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. Int J Hydrogen Energy 32:748–754CrossRef Wang XJ, Ren NQ, Xiang WS, Guo WQ (2007) Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. Int J Hydrogen Energy 32:748–754CrossRef
18.
Zurück zum Zitat Xing DF, Ren NQ, Li QB, Lin M, Wang A (2006) Ethanoligenens harbinense gen nov., sp. nov., isolated from molasses wastewater. Int J Syst Evol Microbiol 56:755–760CrossRef Xing DF, Ren NQ, Li QB, Lin M, Wang A (2006) Ethanoligenens harbinense gen nov., sp. nov., isolated from molasses wastewater. Int J Syst Evol Microbiol 56:755–760CrossRef
19.
Zurück zum Zitat Niu K, Zhang X, Tan WS, Zhu ML (2010) Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 35(1):71–80CrossRef Niu K, Zhang X, Tan WS, Zhu ML (2010) Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 35(1):71–80CrossRef
20.
Zurück zum Zitat Ren NQ, Liu BF, Ding J, Xie GJ (2009) Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresour Technol 100(1):484–487CrossRef Ren NQ, Liu BF, Ding J, Xie GJ (2009) Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresour Technol 100(1):484–487CrossRef
21.
Zurück zum Zitat Wang YZ, Liao Q, Zhu X, Tian X, Wang ZK, Zhang P, Zhang BP (2008) Isolation and identification of photosynthetic bacteria and their hydrogen-producing abilities. Chin J Appl Environ Biol 14(5):673–677 Wang YZ, Liao Q, Zhu X, Tian X, Wang ZK, Zhang P, Zhang BP (2008) Isolation and identification of photosynthetic bacteria and their hydrogen-producing abilities. Chin J Appl Environ Biol 14(5):673–677
22.
Zurück zum Zitat Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production rate from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy 33(19):4981–4988CrossRef Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production rate from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy 33(19):4981–4988CrossRef
23.
Zurück zum Zitat Li D, Yuan ZH, Sun YM, Kong XY, Zhang Y (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energy 34:812–820CrossRef Li D, Yuan ZH, Sun YM, Kong XY, Zhang Y (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energy 34:812–820CrossRef
24.
Zurück zum Zitat Zhao X, Xing DF, Zhang L, Ren NQ (2010) Characterization and overexpression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbinense. Int J Hydrogen Energy 35:9598–9602CrossRef Zhao X, Xing DF, Zhang L, Ren NQ (2010) Characterization and overexpression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbinense. Int J Hydrogen Energy 35:9598–9602CrossRef
25.
Zurück zum Zitat Ren NQ, Lin HL, Zhang K, Zheng GX, Duan ZJ, Lin M (2007) Cloning, expression, and characterization of an acetate kinase from a high rate of biohydrogen bacterial strain Ethanoligenens sp. hit B49. Curr Microbiol 55(2):167–172CrossRef Ren NQ, Lin HL, Zhang K, Zheng GX, Duan ZJ, Lin M (2007) Cloning, expression, and characterization of an acetate kinase from a high rate of biohydrogen bacterial strain Ethanoligenens sp. hit B49. Curr Microbiol 55(2):167–172CrossRef
26.
Zurück zum Zitat Wang JL, Wan W (2009) Factors influencing fermentative hydrogen production: areview. Int J Hydrogen Energy 34:799–811CrossRef Wang JL, Wan W (2009) Factors influencing fermentative hydrogen production: areview. Int J Hydrogen Energy 34:799–811CrossRef
27.
Zurück zum Zitat Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manag 74(1):65–70CrossRef Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manag 74(1):65–70CrossRef
28.
Zurück zum Zitat Wang Y, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY (2008) Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. Int J Hydrogen Energy 33(4):1164–1171CrossRef Wang Y, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY (2008) Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. Int J Hydrogen Energy 33(4):1164–1171CrossRef
29.
Zurück zum Zitat Wang B, Wan W, Wang JL (2008) Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int J Hydrogen Energy 33(23):7013–7019CrossRef Wang B, Wan W, Wang JL (2008) Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int J Hydrogen Energy 33(23):7013–7019CrossRef
31.
Zurück zum Zitat Wang JL, Wan W (2008) Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:5392–5397CrossRef Wang JL, Wan W (2008) Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:5392–5397CrossRef
32.
Zurück zum Zitat Mu Y, Zheng XJ, Yu HQ, Zhu RF (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31:780–785CrossRef Mu Y, Zheng XJ, Yu HQ, Zhu RF (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31:780–785CrossRef
33.
Zurück zum Zitat Luo G, Xie L, Zou ZH, Zhou Q, Wang JY (2010) Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl Energy 87:3710–3717CrossRef Luo G, Xie L, Zou ZH, Zhou Q, Wang JY (2010) Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl Energy 87:3710–3717CrossRef
34.
Zurück zum Zitat Ren NQ, Ding J, Ding L, Liu M, Li YF, Bao HX (2004) Effect of Cu2+ concentration on hydrogen fermentation by mixed culture. J Harbin Inst Technol (New Ser) 11(1):11–16 Ren NQ, Ding J, Ding L, Liu M, Li YF, Bao HX (2004) Effect of Cu2+ concentration on hydrogen fermentation by mixed culture. J Harbin Inst Technol (New Ser) 11(1):11–16
35.
Zurück zum Zitat Wang JL, Wan W (2008) Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:1215–1220CrossRef Wang JL, Wan W (2008) Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:1215–1220CrossRef
36.
Zurück zum Zitat Zhang YF, Liu GZ, Shen JQ (2005) Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int J Hydrogen Energy 30:855–860CrossRef Zhang YF, Liu GZ, Shen JQ (2005) Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int J Hydrogen Energy 30:855–860CrossRef
37.
Zurück zum Zitat Liu BF, Ren NQ, Ding J, Xie GJ, Guo WQ (2009) The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34:721–726CrossRef Liu BF, Ren NQ, Ding J, Xie GJ, Guo WQ (2009) The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34:721–726CrossRef
38.
Zurück zum Zitat Wang J, Wan W (2008) Influence of Ni2+ concentration on biohydrogen production. Bioresour Technol 99:8864–8868CrossRef Wang J, Wan W (2008) Influence of Ni2+ concentration on biohydrogen production. Bioresour Technol 99:8864–8868CrossRef
39.
Zurück zum Zitat Mu Y, Yu HQ (2006) Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94:980–987CrossRef Mu Y, Yu HQ (2006) Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94:980–987CrossRef
40.
Zurück zum Zitat Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy 33:4981–4988CrossRef Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy 33:4981–4988CrossRef
41.
Zurück zum Zitat Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrogen Energy 33:7397–7404CrossRef Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrogen Energy 33:7397–7404CrossRef
42.
Zurück zum Zitat Li JZ, Li BK, Zhu GF, Ren NQ, Bo LX, He JG (2007) Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int J Hydrogen Energy 32:3274–3283CrossRef Li JZ, Li BK, Zhu GF, Ren NQ, Bo LX, He JG (2007) Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int J Hydrogen Energy 32:3274–3283CrossRef
43.
Zurück zum Zitat Ren NQ, Chen ZB, Wang XJ, Hu DX, Wang AJ (2005) Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment. Int Biodeterior Biodegrad 56:216–223CrossRef Ren NQ, Chen ZB, Wang XJ, Hu DX, Wang AJ (2005) Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment. Int Biodeterior Biodegrad 56:216–223CrossRef
44.
Zurück zum Zitat Chu CF, Ebie Y, Inamori Y, Kong HN (2009) Effect of hydraulic retention time on the hydrogen yield and population of Clostridium in hydrogen fermentation of glucose. J Environ Sci 21:424–428CrossRef Chu CF, Ebie Y, Inamori Y, Kong HN (2009) Effect of hydraulic retention time on the hydrogen yield and population of Clostridium in hydrogen fermentation of glucose. J Environ Sci 21:424–428CrossRef
45.
Zurück zum Zitat Yu HQ, Zhu ZH, Hu WR, Zhang HS (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359–1365CrossRef Yu HQ, Zhu ZH, Hu WR, Zhang HS (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359–1365CrossRef
46.
Zurück zum Zitat Zhao BH, Yue ZB, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY (2008) Optimization of hydrogen production in a granule-based UASB reactor. Int J Hydrogen Energy 33:2454–2461CrossRef Zhao BH, Yue ZB, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY (2008) Optimization of hydrogen production in a granule-based UASB reactor. Int J Hydrogen Energy 33:2454–2461CrossRef
47.
Zurück zum Zitat Ren NQ, Li JZ, Li BK, Wang Y, Liu SR (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31:2147–2157CrossRef Ren NQ, Li JZ, Li BK, Wang Y, Liu SR (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31:2147–2157CrossRef
48.
Zurück zum Zitat Wyman CE (1994) Ethanol from lignocellulosic biomass: Technology, economies, and opportunities. Bioresour Technol 50:3–15CrossRef Wyman CE (1994) Ethanol from lignocellulosic biomass: Technology, economies, and opportunities. Bioresour Technol 50:3–15CrossRef
49.
Zurück zum Zitat Wang J (2009) The situation of straw resources and benefit analysis of straw biogas. Environ Prot Circ Econ 29(12):39–41 Wang J (2009) The situation of straw resources and benefit analysis of straw biogas. Environ Prot Circ Econ 29(12):39–41
50.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
51.
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
52.
Zurück zum Zitat Ren NQ, Wang AJ, Cao GL, Xu JF, Gao LF (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060CrossRef Ren NQ, Wang AJ, Cao GL, Xu JF, Gao LF (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060CrossRef
53.
Zurück zum Zitat Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40CrossRef Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40CrossRef
54.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
55.
Zurück zum Zitat Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505CrossRef Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505CrossRef
56.
Zurück zum Zitat Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30:493–496CrossRef Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30:493–496CrossRef
57.
Zurück zum Zitat Pan CM, Zhang SF, Fan YT, Hou HW (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrogen Energy 35(7):2663–2669CrossRef Pan CM, Zhang SF, Fan YT, Hou HW (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrogen Energy 35(7):2663–2669CrossRef
58.
Zurück zum Zitat Cao GL, Ren NQ, Wang AJ (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 34(17):7182–7188CrossRef Cao GL, Ren NQ, Wang AJ (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 34(17):7182–7188CrossRef
59.
Zurück zum Zitat Ren NQ, Cao GL, Guo WQ, Wang AJ, Zhu YH (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 35:2708–2712CrossRef Ren NQ, Cao GL, Guo WQ, Wang AJ, Zhu YH (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 35:2708–2712CrossRef
60.
Zurück zum Zitat Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110:143–157CrossRef Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110:143–157CrossRef
61.
Zurück zum Zitat Xu JF, Ren NQ, Wang AJ, Qiu J, Zhao QL, Feng YJ, Liu BF (2010) Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost. Int J Hydrogen Energy 35(24):13467–13474CrossRef Xu JF, Ren NQ, Wang AJ, Qiu J, Zhao QL, Feng YJ, Liu BF (2010) Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost. Int J Hydrogen Energy 35(24):13467–13474CrossRef
62.
Zurück zum Zitat Long C, Cui J, Liu Z, Liu Y, Long M, Hu Z (2010) Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int J Hydrogen Energy 35(13):6657–6664CrossRef Long C, Cui J, Liu Z, Liu Y, Long M, Hu Z (2010) Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int J Hydrogen Energy 35(13):6657–6664CrossRef
63.
Zurück zum Zitat Ren NQ, Cao GL, Wang AJ, Lee DJ (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium ihermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124–6132CrossRef Ren NQ, Cao GL, Wang AJ, Lee DJ (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium ihermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124–6132CrossRef
64.
Zurück zum Zitat Li S, Lai C, Cai Y, Yang X, Yang S, Zhu M, Wang J, Wang X (2010) High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour Technol 101(22):8718–8724CrossRef Li S, Lai C, Cai Y, Yang X, Yang S, Zhu M, Wang J, Wang X (2010) High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour Technol 101(22):8718–8724CrossRef
65.
Zurück zum Zitat Ren NQ, Wang AJ, Gao LF et al (2008) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int J Hydrogen Energy 33:5250–5255CrossRef Ren NQ, Wang AJ, Gao LF et al (2008) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int J Hydrogen Energy 33:5250–5255CrossRef
66.
Zurück zum Zitat Wang AJ, Ren NQ, Shi YJ et al (2008) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrogen Energy 33:912–917CrossRef Wang AJ, Ren NQ, Shi YJ et al (2008) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrogen Energy 33:912–917CrossRef
67.
Zurück zum Zitat Li DM, Chen HZ (2007) Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy 32(12):1742–1748CrossRef Li DM, Chen HZ (2007) Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy 32(12):1742–1748CrossRef
68.
Zurück zum Zitat Liu Y, Yu P, Song X et al (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 33:2927–2933CrossRef Liu Y, Yu P, Song X et al (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 33:2927–2933CrossRef
69.
Zurück zum Zitat Fang HHP, Zhang T, Liu H (2003) Biohydrogen production from cellulose in wastewater under thermophilic condition. J Environ Manag 69:149–156CrossRef Fang HHP, Zhang T, Liu H (2003) Biohydrogen production from cellulose in wastewater under thermophilic condition. J Environ Manag 69:149–156CrossRef
70.
Zurück zum Zitat Zhang ML, Fan YT, Xing Y et al (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254CrossRef Zhang ML, Fan YT, Xing Y et al (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254CrossRef
71.
Zurück zum Zitat Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505CrossRef Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505CrossRef
72.
Zurück zum Zitat Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30:493–496CrossRef Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30:493–496CrossRef
73.
Zurück zum Zitat Ren NQ, Xu JF, Gao LF, Xin L, Qiu J, Su DX (2010) Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int J Hydrogen Energy 35(7):2742–2746CrossRef Ren NQ, Xu JF, Gao LF, Xin L, Qiu J, Su DX (2010) Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int J Hydrogen Energy 35(7):2742–2746CrossRef
74.
Zurück zum Zitat Cao GL, Ren NQ, Wang AJ, Yao J, Liu LH (2010) Combination of mild chemical pretreatment with biological conversion for enhanced hydrogen production from cornstalk wastes. J Biotechnol 150S:S9 Cao GL, Ren NQ, Wang AJ, Yao J, Liu LH (2010) Combination of mild chemical pretreatment with biological conversion for enhanced hydrogen production from cornstalk wastes. J Biotechnol 150S:S9
75.
Zurück zum Zitat Cao GL, Ren NQ, Wang AJ (2010) Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 35:13475–13480CrossRef Cao GL, Ren NQ, Wang AJ (2010) Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 35:13475–13480CrossRef
76.
Zurück zum Zitat Li RY, Fang HHP (2009) Heterotrophic photo fermentative hydrogen production. Crit Rev Environ Sci Technol 39(12):1081–1108CrossRef Li RY, Fang HHP (2009) Heterotrophic photo fermentative hydrogen production. Crit Rev Environ Sci Technol 39(12):1081–1108CrossRef
77.
Zurück zum Zitat Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381CrossRef Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381CrossRef
78.
Zurück zum Zitat Fang HP, Zhu HG, Zhang T (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and and Rhodobacter sphaeroides. Int J Hydrogen Energy 31:2223–2230CrossRef Fang HP, Zhu HG, Zhang T (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and and Rhodobacter sphaeroides. Int J Hydrogen Energy 31:2223–2230CrossRef
79.
Zurück zum Zitat Liu BF, Ren NQ, Tang J, Ding J, Liu WZ, Xu JF, Cao GL, Xie GJ (2010) Bio-hydrogen production by mixed culture of photo-fermentation and dark-fermentation bacteria. Int J Hydrogen Energy 35(7):2858–2862CrossRef Liu BF, Ren NQ, Tang J, Ding J, Liu WZ, Xu JF, Cao GL, Xie GJ (2010) Bio-hydrogen production by mixed culture of photo-fermentation and dark-fermentation bacteria. Int J Hydrogen Energy 35(7):2858–2862CrossRef
80.
Zurück zum Zitat Liu BF, Ren NQ, Xing DF, Ding J, Zheng GX, Guo WQ, Xie GJ (2009) Bio-hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresour Technol 100:2719–2723CrossRef Liu BF, Ren NQ, Xing DF, Ding J, Zheng GX, Guo WQ, Xie GJ (2009) Bio-hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresour Technol 100:2719–2723CrossRef
81.
Zurück zum Zitat Tao YZ, Chen Y, Wu YQ, He YL, Zhou ZH (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 32:200–206CrossRef Tao YZ, Chen Y, Wu YQ, He YL, Zhou ZH (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 32:200–206CrossRef
82.
Zurück zum Zitat Lo YC, Chen SD, Chen CY, Huang TI, Lin CY, Chang J-S (2008) Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrogen Energy 33(19):5224–5233CrossRef Lo YC, Chen SD, Chen CY, Huang TI, Lin CY, Chang J-S (2008) Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrogen Energy 33(19):5224–5233CrossRef
83.
Zurück zum Zitat Su HB, Cheng J, Zhou JH, Song WL, Cen KF (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 34:1780–1786CrossRef Su HB, Cheng J, Zhou JH, Song WL, Cen KF (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 34:1780–1786CrossRef
84.
Zurück zum Zitat Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrogen Energy 33(19):5224–5233CrossRef Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrogen Energy 33(19):5224–5233CrossRef
85.
Zurück zum Zitat Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320CrossRef Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320CrossRef
86.
Zurück zum Zitat Liu WZ, Wang AJ, Ren NQ, Zhao XY, Liu LH, Yu ZG, Lee DJ (2008) Electrochemically assisted biohydrogen production from acetate. Energy Fuels 22:159–163CrossRef Liu WZ, Wang AJ, Ren NQ, Zhao XY, Liu LH, Yu ZG, Lee DJ (2008) Electrochemically assisted biohydrogen production from acetate. Energy Fuels 22:159–163CrossRef
87.
Zurück zum Zitat Wang AJ, Liu WZ, Ren NQ, Cheng HA (2010) Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activated carbon. Int J Hydrogen Energy 35(24):13488–13492CrossRef Wang AJ, Liu WZ, Ren NQ, Cheng HA (2010) Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activated carbon. Int J Hydrogen Energy 35(24):13488–13492CrossRef
88.
Zurück zum Zitat Liu WZ, Wang AJ, Cheng SA, Logan BE, Yu H, Deng Y, Van Nostrand JD, Wu LY, He ZL, Zhou JZ (2010) Geochip-based functional gene analysis of Anodophilic communities in microbial electrolysis cells under different operational modes. Environ Sci Technol 44(19):7729–7735CrossRef Liu WZ, Wang AJ, Cheng SA, Logan BE, Yu H, Deng Y, Van Nostrand JD, Wu LY, He ZL, Zhou JZ (2010) Geochip-based functional gene analysis of Anodophilic communities in microbial electrolysis cells under different operational modes. Environ Sci Technol 44(19):7729–7735CrossRef
89.
Zurück zum Zitat Lu L, Xing D, Xie TH, Ren NQ, Logan BE (2010) Hydrogen production from proteins via electro hydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25:2690–2695CrossRef Lu L, Xing D, Xie TH, Ren NQ, Logan BE (2010) Hydrogen production from proteins via electro hydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25:2690–2695CrossRef
90.
Zurück zum Zitat Wang AJ, Liu WZ, Cheng SA, Xing DF, Zhou JZ, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrogen Energy 34:3653–3658CrossRef Wang AJ, Liu WZ, Cheng SA, Xing DF, Zhou JZ, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrogen Energy 34:3653–3658CrossRef
91.
Zurück zum Zitat Hu H, Fan Y, Liu H (2008) Hydrogen production using single chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178CrossRef Hu H, Fan Y, Liu H (2008) Hydrogen production using single chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178CrossRef
92.
Zurück zum Zitat Lu L, Ren NQ, Zhao X, Wang H, Wu D, Xing DF (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4:1329–1336CrossRef Lu L, Ren NQ, Zhao X, Wang H, Wu D, Xing DF (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4:1329–1336CrossRef
93.
Zurück zum Zitat Sun M, Sheng G, Zhang L, Xia C, Mu Z, Liu X, Wang H, Yu H, Qi R, Yu T, Yang M (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100CrossRef Sun M, Sheng G, Zhang L, Xia C, Mu Z, Liu X, Wang H, Yu H, Qi R, Yu T, Yang M (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100CrossRef
94.
Zurück zum Zitat Sun M, Mu ZX, Sheng GP et al (2010) Hydrogen production from propionate in a biocatalyzed system with in situ utilization of the electricity generated from a microbial fuel cell. Int Biodeterior Biodegradation 64:378–382CrossRef Sun M, Mu ZX, Sheng GP et al (2010) Hydrogen production from propionate in a biocatalyzed system with in situ utilization of the electricity generated from a microbial fuel cell. Int Biodeterior Biodegradation 64:378–382CrossRef
95.
Zurück zum Zitat Lu L, Ren N, Xing D, Logan BE (2009) Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24:3055–3060CrossRef Lu L, Ren N, Xing D, Logan BE (2009) Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24:3055–3060CrossRef
96.
Zurück zum Zitat Wang AJ, Sun D, Cao GL, Wang HY, Ren NQ, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143CrossRef Wang AJ, Sun D, Cao GL, Wang HY, Ren NQ, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143CrossRef
Metadaten
Titel
Biohydrogen Production from Anaerobic Fermentation
verfasst von
Ai-Jie Wang
Guang-Li Cao
Wen-Zong Liu
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2011_123

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.