Skip to main content

2020 | OriginalPaper | Buchkapitel

7. Bioinspired Water Desalination and Water Purification Approaches Using Membranes

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As discussed in Chap. 1, 97.5% of water is saline water, therefore water desalination is increasingly important in some parts of the world. However, water desalinization remains an energy intensive process and prohibitively expensive. In addition, water contamination from human activity affects clean water supply. Water purification from all contaminants is important (Brown and Bhushan 2016; Bhushan 2018).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agre, P., Sasaki, S., and Chrispeels, M. J. (1993), “Aquaporins: a Family of Water Channel Proteins,” Am. J. Physiol. 265, F461. Agre, P., Sasaki, S., and Chrispeels, M. J. (1993), “Aquaporins: a Family of Water Channel Proteins,” Am. J. Physiol. 265, F461.
Zurück zum Zitat Bhushan, B. (2018), Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, third ed., Springer International, Cham, Switzerland. Bhushan, B. (2018), Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, third ed., Springer International, Cham, Switzerland.
Zurück zum Zitat Bhushan, B. (2019), “Bioinspired Oil-water Seperation Approaches for Oil Spill Clean-up and Water Purification,” Phil. Trans. R. Soc. A 377, 20190120. Bhushan, B. (2019), “Bioinspired Oil-water Seperation Approaches for Oil Spill Clean-up and Water Purification,” Phil. Trans. R. Soc. A 377, 20190120.
Zurück zum Zitat Brown, P. S., and Bhushan, B. (2015), “Bioinspired, Roughness-Induced, Water and Oil Super-philic and Super-phobic Coatings Prepared by Adaptable Layer-by-Layer Technique,” Sci. Rep. 5, 14030. Brown, P. S., and Bhushan, B. (2015), “Bioinspired, Roughness-Induced, Water and Oil Super-philic and Super-phobic Coatings Prepared by Adaptable Layer-by-Layer Technique,” Sci. Rep. 5, 14030.
Zurück zum Zitat Brown, P. S. and Bhushan, B. (2016), “Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil,” Phil. Trans. R. Soc. A 374, 20160135. Brown, P. S. and Bhushan, B. (2016), “Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil,” Phil. Trans. R. Soc. A 374, 20160135.
Zurück zum Zitat Cazacu, A. Tong, C., van der Lee, A., Fyles, T. M., and Barboiu, M. (2006), “Columnar Self-Assembled Ureido Crown Ethers:  An Example of Ion-Channel Organization in Lipid Bilayers,” J. Am. Chem. Soc. 128, 9541–9548. Cazacu, A. Tong, C., van der Lee, A., Fyles, T. M., and Barboiu, M. (2006), “Columnar Self-Assembled Ureido Crown Ethers:  An Example of Ion-Channel Organization in Lipid Bilayers,” J. Am. Chem. Soc. 128, 9541–9548.
Zurück zum Zitat Cavallo, F. and Lagally, M. G. (2010), “Semiconductors Turn Soft: Inorganic Nanomembranes,” Soft Matter 6, 439–455. Cavallo, F. and Lagally, M. G. (2010), “Semiconductors Turn Soft: Inorganic Nanomembranes,” Soft Matter 6, 439–455.
Zurück zum Zitat Crini, G. (2005), “Recent Developments in Polysaccharide-based Materials used as Adsorbents in Wastewater Treatment,” Prog. Polym. Sci. 30, 38–70. Crini, G. (2005), “Recent Developments in Polysaccharide-based Materials used as Adsorbents in Wastewater Treatment,” Prog. Polym. Sci. 30, 38–70.
Zurück zum Zitat Corry, B. (2008), “Designing Carbon Nanotube Membranes for Efficient Water Desalination,” J. Phys. Chem. B 112, 1427–1434. Corry, B. (2008), “Designing Carbon Nanotube Membranes for Efficient Water Desalination,” J. Phys. Chem. B 112, 1427–1434.
Zurück zum Zitat Davis, M. E. (2002), “Ordered Porous Materials for Emerging Applications,” Nature 417, 813–820. Davis, M. E. (2002), “Ordered Porous Materials for Emerging Applications,” Nature 417, 813–820.
Zurück zum Zitat Davis, S. A., Burkett, S. L., Mendelson, N. H., and Mann, S. (1997), “Bacterial Templating of Ordered Macrostructures in Silica and Silica-surfactant Mesophases,” Nature 385, 420–423. Davis, S. A., Burkett, S. L., Mendelson, N. H., and Mann, S. (1997), “Bacterial Templating of Ordered Macrostructures in Silica and Silica-surfactant Mesophases,” Nature 385, 420–423.
Zurück zum Zitat Elimelech, M. and Phillip, W. A. (2011), “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science 333, 712–717. Elimelech, M. and Phillip, W. A. (2011), “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science 333, 712–717.
Zurück zum Zitat Esmanski, A. and Ozin, G. A. (2009), “Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries,” Adv. Funct. Mater. 19, 1999–2010. Esmanski, A. and Ozin, G. A. (2009), “Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries,” Adv. Funct. Mater. 19, 1999–2010.
Zurück zum Zitat Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2008), “Ion exclusion by sub-2-nm carbon nanotube pores,” Proc. Natl. Acad. Sci. 105, 17250–17255. Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2008), “Ion exclusion by sub-2-nm carbon nanotube pores,” Proc. Natl. Acad. Sci. 105, 17250–17255.
Zurück zum Zitat Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993), “Self-assembling Organic Nanotubes Based on a Cyclic Peptide Architecture,” Nature 366, 324–327. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993), “Self-assembling Organic Nanotubes Based on a Cyclic Peptide Architecture,” Nature 366, 324–327.
Zurück zum Zitat Habel, J., Hansen, M., Kynde, S., Larsen, N., Midtgaard, S. R., Jensen, G. V., Bomholt, J., Ogbonna, A., Almdal, K., Schulz, A., and Hélix-Nielsen, C. (2015), “Aquaporin-based Biomimetic Polymeric Membranes: Approaches and Challenges,” Membranes 5, 307–351. Habel, J., Hansen, M., Kynde, S., Larsen, N., Midtgaard, S. R., Jensen, G. V., Bomholt, J., Ogbonna, A., Almdal, K., Schulz, A., and Hélix-Nielsen, C. (2015), “Aquaporin-based Biomimetic Polymeric Membranes: Approaches and Challenges,” Membranes 5, 307–351.
Zurück zum Zitat Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2006), “Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes,” Science 312, 1034–1037. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2006), “Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes,” Science 312, 1034–1037.
Zurück zum Zitat Hourani, R., Zhang, C., van der Weegen, R., Ruiz, L., Li, C., Keten, S., Helms, B. A., and Xu, T. (2011), “Processable Cyclic Peptide Nanotubes with Tunable Interiors,” J. Am. Chem. Soc. 133, 15296–15299. Hourani, R., Zhang, C., van der Weegen, R., Ruiz, L., Li, C., Keten, S., Helms, B. A., and Xu, T. (2011), “Processable Cyclic Peptide Nanotubes with Tunable Interiors,” J. Am. Chem. Soc. 133, 15296–15299.
Zurück zum Zitat Hummer, G., Rasaiah, J. C., and Noworyta, J. P. (2001), “Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube,” Nature 414, 188–190. Hummer, G., Rasaiah, J. C., and Noworyta, J. P. (2001), “Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube,” Nature 414, 188–190.
Zurück zum Zitat Lee, K. P., Arnot, T. C., and Mattia, D. (2011), “A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential,” J. Membr. Sci. 370, 1–22. Lee, K. P., Arnot, T. C., and Mattia, D. (2011), “A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential,” J. Membr. Sci. 370, 1–22.
Zurück zum Zitat Li, F., Kong, W., Bhushan, B., Zhao, X., and Pan, Y. (2019), “Ultraviolet–driven Switchable Superliquiphobic/superliquiphilic Coating for Separation of Oil-water Mixtures and Emulsions and Water Purification,” J. Colloid Interface Sci. 557, 395–407. Li, F., Kong, W., Bhushan, B., Zhao, X., and Pan, Y. (2019), “Ultraviolet–driven Switchable Superliquiphobic/superliquiphilic Coating for Separation of Oil-water Mixtures and Emulsions and Water Purification,” J. Colloid Interface Sci. 557, 395–407.
Zurück zum Zitat Liu, G. and Ding, J. (1998), “Diblock Thin Films with Densely Hexagonally Packed Nanochannels,” Adv. Mater. 10, 69–71. Liu, G. and Ding, J. (1998), “Diblock Thin Films with Densely Hexagonally Packed Nanochannels,” Adv. Mater. 10, 69–71.
Zurück zum Zitat Ma, W., Samal, S. K., Liu, Z., Xiong, R., De Smedt, S. C., Bhushan, B., Zhang, Q., Huang, C. (2017), “Dual pH- and Ammonia-vapor-responsive Electrospun Nanofibrous Membranes for Oil-water Separations,” J. Membr. Sci. 537, 128–139. Ma, W., Samal, S. K., Liu, Z., Xiong, R., De Smedt, S. C., Bhushan, B., Zhang, Q., Huang, C. (2017), “Dual pH- and Ammonia-vapor-responsive Electrospun Nanofibrous Membranes for Oil-water Separations,” J. Membr. Sci. 537, 128–139.
Zurück zum Zitat Negin, S., Daschbach, M. M., Kulikov, O. V., Rath, N., and Gokel, G. W. (2011), “Pore Formation in Phospholipid Bilayers by Branched-Chain Pyrogallol[4]arenes,” J. Am. Chem. Soc. 133, 3234–3237. Negin, S., Daschbach, M. M., Kulikov, O. V., Rath, N., and Gokel, G. W. (2011), “Pore Formation in Phospholipid Bilayers by Branched-Chain Pyrogallol[4]arenes,” J. Am. Chem. Soc. 133, 3234–3237.
Zurück zum Zitat Ogasawara, W., Shenton, W., Davis, S. A., and Mann, S. (2000), “Template Mineralization of Ordered Macroporous Chitin–Silica Composites Using a Cuttlebone-Derived Organic Matrix,” Chem. Mater. 12, 2835–2837. Ogasawara, W., Shenton, W., Davis, S. A., and Mann, S. (2000), “Template Mineralization of Ordered Macroporous Chitin–Silica Composites Using a Cuttlebone-Derived Organic Matrix,” Chem. Mater. 12, 2835–2837.
Zurück zum Zitat Peinemann, K.-V., Abetz, V., and Simon, P. F. W. (2007). “Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation,” Nat. Mater. 6, 992–996. Peinemann, K.-V., Abetz, V., and Simon, P. F. W. (2007). “Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation,” Nat. Mater. 6, 992–996.
Zurück zum Zitat Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J., Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., Duan, H., Magonov, S. N., and Vinogradov, S. A. (2004), “Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores,” Nature 430, 764–768. Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J., Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., Duan, H., Magonov, S. N., and Vinogradov, S. A. (2004), “Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores,” Nature 430, 764–768.
Zurück zum Zitat Percec, V., Dulcey, A. E., Peterca, M., Adelman, P., Samant, R., Balagurusamy, V. S. K., and Heiney, P. A. (2007), “Helical Pores Self-Assembled from Homochiral Dendritic Dipeptides Based on l-Tyr and Nonpolar α-Amino Acids,” J. Am. Chem. Soc. 129, 5992–6002. Percec, V., Dulcey, A. E., Peterca, M., Adelman, P., Samant, R., Balagurusamy, V. S. K., and Heiney, P. A. (2007), “Helical Pores Self-Assembled from Homochiral Dendritic Dipeptides Based on l-Tyr and Nonpolar α-Amino Acids,” J. Am. Chem. Soc. 129, 5992–6002.
Zurück zum Zitat Phillip, W. A., Hillmyer, M. A., Cussler, E. L. (2010), “Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation,” Macromolecules 43, 7763–7770. Phillip, W. A., Hillmyer, M. A., Cussler, E. L. (2010), “Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation,” Macromolecules 43, 7763–7770.
Zurück zum Zitat Pollard, S. J. T., Fowler, G. D., Sollars, C. J., Perry, R. (1992), “Low-cost Adsorbents for Waste and Waste-water Treatment–a Review,” Sci. Total Environ. 116, 31–52. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., Perry, R. (1992), “Low-cost Adsorbents for Waste and Waste-water Treatment–a Review,” Sci. Total Environ. 116, 31–52.
Zurück zum Zitat Sengur-Tasdemir, R., Aydin, S., Turken, T., Genceli, E. A., and Koyuncu, I. (2016), “Biomimetic Approaches for Membrane Technologies,” Sep. Purif. Rev. 45, 122–140. Sengur-Tasdemir, R., Aydin, S., Turken, T., Genceli, E. A., and Koyuncu, I. (2016), “Biomimetic Approaches for Membrane Technologies,” Sep. Purif. Rev. 45, 122–140.
Zurück zum Zitat Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., and Mayes, A. M. (2008), “Science and Technology for Water Purification in the Coming Decades,” Nature 452, 301–310. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., and Mayes, A. M. (2008), “Science and Technology for Water Purification in the Coming Decades,” Nature 452, 301–310.
Zurück zum Zitat Shin, Y., Liu, J., Chang, J. H., Nie, Z., and Exarhos, G. J. (2001), “Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures,” Adv. Mater. 13, 728–732. Shin, Y., Liu, J., Chang, J. H., Nie, Z., and Exarhos, G. J. (2001), “Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures,” Adv. Mater. 13, 728–732.
Zurück zum Zitat Shin, Y., Wang, L.-Q., Chang, J. H., Samuels, W. D., and Exarhos, G. J. (2003), “Morphology Control of Hierarchically Ordered Ceramic Materials Prepared by Surfactant-directed Sol-gel Mineralization of Wood Cellular Structures,” Studies in Surface Science and Catalysis 146, 447–451. Shin, Y., Wang, L.-Q., Chang, J. H., Samuels, W. D., and Exarhos, G. J. (2003), “Morphology Control of Hierarchically Ordered Ceramic Materials Prepared by Surfactant-directed Sol-gel Mineralization of Wood Cellular Structures,” Studies in Surface Science and Catalysis 146, 447–451.
Zurück zum Zitat Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., and Ajayan, P. M. (2004), “Carbon Nanotube Filters,” Nat. Mater. 3, 610–614. Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., and Ajayan, P. M. (2004), “Carbon Nanotube Filters,” Nat. Mater. 3, 610–614.
Zurück zum Zitat Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., and Mahurin, S. M. (2015), “Water Desalination using Nanoporous Single-layer Graphene,” Nat. Nanotechnol. 10, 459–464. Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., and Mahurin, S. M. (2015), “Water Desalination using Nanoporous Single-layer Graphene,” Nat. Nanotechnol. 10, 459–464.
Zurück zum Zitat Taguchi, A. and Schüth, F. (2005), “Ordered Mesoporous Materials in Catalysis,” Micropor. Mesopor. Mater. 77, 1–45. Taguchi, A. and Schüth, F. (2005), “Ordered Mesoporous Materials in Catalysis,” Micropor. Mesopor. Mater. 77, 1–45.
Zurück zum Zitat Verkman, A. S., Anderson, M. O., and Papadopoulos, M. C. (2014), “Aquaporins: Important but Elusive Drug Targets,” Nat. Rev. Drug Discov. 13, 259–277. Verkman, A. S., Anderson, M. O., and Papadopoulos, M. C. (2014), “Aquaporins: Important but Elusive Drug Targets,” Nat. Rev. Drug Discov. 13, 259–277.
Zurück zum Zitat Wang, S. and Peng, Y. (2010), “Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment,” Chem. Eng. J. 156, 11–24. Wang, S. and Peng, Y. (2010), “Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment,” Chem. Eng. J. 156, 11–24.
Zurück zum Zitat Yang, D., Qi, L., and Ma, J. (2002), “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater. 14, 1543–1546. Yang, D., Qi, L., and Ma, J. (2002), “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater. 14, 1543–1546.
Zurück zum Zitat Zhang, B., Davis, S. A., and Mann, S. (2002), “Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films,” Chem. Mater. 14, 1369–1375. Zhang, B., Davis, S. A., and Mann, S. (2002), “Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films,” Chem. Mater. 14, 1369–1375.
Zurück zum Zitat Zhao, Y. Qiu, C., Li, X., Vararattanavech, A. Shen, W. Torres, J., Hélix-Nielsen, C., Wang, R., Hu, X., Fane, A. G., and Tang, C. Y. (2012), “Synthesis of Robust and High-performance Aquaporin-based Biomimetic Membranes by Interfacial Polymerization-membrane Preparation and RO Performance Characterization,” J. Membr. Sci. 423–424, 422–428. Zhao, Y. Qiu, C., Li, X., Vararattanavech, A. Shen, W. Torres, J., Hélix-Nielsen, C., Wang, R., Hu, X., Fane, A. G., and Tang, C. Y. (2012), “Synthesis of Robust and High-performance Aquaporin-based Biomimetic Membranes by Interfacial Polymerization-membrane Preparation and RO Performance Characterization,” J. Membr. Sci. 423–424, 422–428.
Metadaten
Titel
Bioinspired Water Desalination and Water Purification Approaches Using Membranes
verfasst von
Bharat Bhushan
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-42132-8_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.