Skip to main content

2020 | OriginalPaper | Buchkapitel

2. Biomedical Materials in Dentistry

verfasst von : Fahimeh Sadat Tabatabaei, Regine Torres, Lobat Tayebi

Erschienen in: Applications of Biomedical Engineering in Dentistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Any progress in the science and technology of dental biomedical materials has been widely influential in dentistry. The main goal of this field is manufacturing of biocompatible materials to replace the lost tissues or to restore disturbed functions of the orofacial region. Although dental biomaterials have had a huge impact on the quality of life of patients, the development of new materials to improve dental treatments is limited. The more enhanced progress in this field to obtain superior function from external materials requires a better understanding of oral tissues, the materials already in used for dental application, as well as the interactions of these materials with the tissues. This chapter reviews main four groups of biomaterials used in dentistry, including (1) metallic biomedicals, such as titanium, dental amalgam, and alloys for metallic restorations; (2) polymeric and hydrogel biomaterials, such as bonding and luting agents, prosthetic polymers and resins, endodontic obturation materials, periodontal dressings, and sutures; (3) ceramic biomaterials, such as hydroxyapatite, bioactive glasses, endodontic filling materials, and zirconia; and (4) composite biomaterials, such as resin-based composites, GIOMERS, and bone augmentation materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Clinical applications of biomaterials. (1982). NIH Consens Statement. Clinical applications of biomaterials. (1982). NIH Consens Statement.
2.
Zurück zum Zitat Aaseth, J., Hilt, B., & Bjorklund, G. (2018). Mercury exposure and health impacts in dental personnel. Environmental Research, 164, 65–69.CrossRef Aaseth, J., Hilt, B., & Bjorklund, G. (2018). Mercury exposure and health impacts in dental personnel. Environmental Research, 164, 65–69.CrossRef
3.
Zurück zum Zitat Larson, T. D. (2015). Amalgam restorations: To bond or not. Northwest Dentistry, 94(5), 35–37. Larson, T. D. (2015). Amalgam restorations: To bond or not. Northwest Dentistry, 94(5), 35–37.
4.
Zurück zum Zitat Roach, M. (2007). Base metal alloys used for dental restorations and implants. Dental Clinics of North America, 51(3), 603–627, vi.CrossRef Roach, M. (2007). Base metal alloys used for dental restorations and implants. Dental Clinics of North America, 51(3), 603–627, vi.CrossRef
5.
Zurück zum Zitat Shen, Y., et al. (2013). Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. Journal of Endodontia, 39(2), 163–172.CrossRef Shen, Y., et al. (2013). Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. Journal of Endodontia, 39(2), 163–172.CrossRef
6.
Zurück zum Zitat Thompson, S. A. (2000). An overview of nickel-titanium alloys used in dentistry. International Endodontic Journal, 33(4), 297–310.MathSciNetCrossRef Thompson, S. A. (2000). An overview of nickel-titanium alloys used in dentistry. International Endodontic Journal, 33(4), 297–310.MathSciNetCrossRef
7.
Zurück zum Zitat Wolcott, J. (2003). Nickel-titanium usage and breakage: An update. Compendium of Continuing Education in Dentistry, 24(11), 852, 854, 856 passim. Wolcott, J. (2003). Nickel-titanium usage and breakage: An update. Compendium of Continuing Education in Dentistry, 24(11), 852, 854, 856 passim.
8.
Zurück zum Zitat Roberts, H. W., et al. (2009). Metal-ceramic alloys in dentistry: A review. Journal of Prosthodontics, 18(2), 188–194.CrossRef Roberts, H. W., et al. (2009). Metal-ceramic alloys in dentistry: A review. Journal of Prosthodontics, 18(2), 188–194.CrossRef
9.
Zurück zum Zitat Bosshardt, D. D., Chappuis, V., & Buser, D. (2017). Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000, 73(1), 22–40.CrossRef Bosshardt, D. D., Chappuis, V., & Buser, D. (2017). Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000, 73(1), 22–40.CrossRef
10.
Zurück zum Zitat Rupp, F., et al. (2018). Surface characteristics of dental implants: A review. Dental Materials, 34(1), 40–57.CrossRef Rupp, F., et al. (2018). Surface characteristics of dental implants: A review. Dental Materials, 34(1), 40–57.CrossRef
11.
Zurück zum Zitat Jafarzadeh Kashi, T. S., et al. (2011). An in vitro assessment of the effects of three surface treatments on repair bond strength of aged composites. Operative Dentistry, 36(6), 608–617.CrossRef Jafarzadeh Kashi, T. S., et al. (2011). An in vitro assessment of the effects of three surface treatments on repair bond strength of aged composites. Operative Dentistry, 36(6), 608–617.CrossRef
12.
Zurück zum Zitat Matos, A. B., et al. (2017). Bonding efficiency and durability: Current possibilities. Brazilian Oral Research, 31(suppl 1), e57.CrossRef Matos, A. B., et al. (2017). Bonding efficiency and durability: Current possibilities. Brazilian Oral Research, 31(suppl 1), e57.CrossRef
13.
Zurück zum Zitat Scotti, N., et al. (2017). New adhesives and bonding techniques. Why and when? The International Journal of Esthetic Dentistry, 12(4), 524–535. Scotti, N., et al. (2017). New adhesives and bonding techniques. Why and when? The International Journal of Esthetic Dentistry, 12(4), 524–535.
14.
Zurück zum Zitat Sofan, E., et al. (2017). Classification review of dental adhesive systems: From the IV generation to the universal type. Annali di Stomatologia (Roma), 8(1), 1–17.CrossRef Sofan, E., et al. (2017). Classification review of dental adhesive systems: From the IV generation to the universal type. Annali di Stomatologia (Roma), 8(1), 1–17.CrossRef
15.
Zurück zum Zitat Hill, E. E. (2007). Dental cements for definitive luting: A review and practical clinical considerations. Dental Clinics of North America, 51(3), 643–658, vi.CrossRef Hill, E. E. (2007). Dental cements for definitive luting: A review and practical clinical considerations. Dental Clinics of North America, 51(3), 643–658, vi.CrossRef
16.
Zurück zum Zitat Lad, P. P., et al. (2014). Practical clinical considerations of luting cements: A review. Journal of International Oral Health, 6(1), 116–120. Lad, P. P., et al. (2014). Practical clinical considerations of luting cements: A review. Journal of International Oral Health, 6(1), 116–120.
17.
Zurück zum Zitat Vahid Dastjerdie, E., et al. (2012). In-vitro comparison of the antimicrobial properties of glass ionomer cements with zinc phosphate cements. Iranian Journal of Pharmaceutical Research, 11(1), 77–82. Vahid Dastjerdie, E., et al. (2012). In-vitro comparison of the antimicrobial properties of glass ionomer cements with zinc phosphate cements. Iranian Journal of Pharmaceutical Research, 11(1), 77–82.
18.
Zurück zum Zitat Patil, S. B., Naveen, B. H., & Patil, N. P. (2006). Bonding acrylic teeth to acrylic resin denture bases: A review. Gerodontology, 23(3), 131–139.CrossRef Patil, S. B., Naveen, B. H., & Patil, N. P. (2006). Bonding acrylic teeth to acrylic resin denture bases: A review. Gerodontology, 23(3), 131–139.CrossRef
19.
Zurück zum Zitat Rodrigues, S., Shenoy, V., & Shetty, T. (2013). Resilient liners: A review. Journal Indian Prosthodontic Society, 13(3), 155–164. Rodrigues, S., Shenoy, V., & Shetty, T. (2013). Resilient liners: A review. Journal Indian Prosthodontic Society, 13(3), 155–164.
20.
Zurück zum Zitat Takamata, T., & Setcos, J. C. (1989). Resin denture bases: Review of accuracy and methods of polymerization. The International Journal of Prosthodontics, 2(6), 555–562. Takamata, T., & Setcos, J. C. (1989). Resin denture bases: Review of accuracy and methods of polymerization. The International Journal of Prosthodontics, 2(6), 555–562.
21.
Zurück zum Zitat Shanahan, D. J., & Duncan, H. F. (2011). Root canal filling using Resilon: A review. British Dental Journal, 211(2), 81–88.CrossRef Shanahan, D. J., & Duncan, H. F. (2011). Root canal filling using Resilon: A review. British Dental Journal, 211(2), 81–88.CrossRef
22.
Zurück zum Zitat Gatewood, R. S. (2007). Endodontic materials. Dental Clinics of North America, 51(3), 695–712, vii.CrossRef Gatewood, R. S. (2007). Endodontic materials. Dental Clinics of North America, 51(3), 695–712, vii.CrossRef
23.
Zurück zum Zitat Ma, X., et al. (2016). Materials for retrograde filling in root canal therapy. Cochrane Database of Systematic Reviews, 12, CD005517. Ma, X., et al. (2016). Materials for retrograde filling in root canal therapy. Cochrane Database of Systematic Reviews, 12, CD005517.
24.
Zurück zum Zitat Najeeb, S., et al. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prosthodontic Research, 60(1), 12–19.CrossRef Najeeb, S., et al. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prosthodontic Research, 60(1), 12–19.CrossRef
25.
Zurück zum Zitat Schwitalla, A., & Muller, W. D. (2013). PEEK dental implants: A review of the literature. The Journal of Oral Implantology, 39(6), 743–749.CrossRef Schwitalla, A., & Muller, W. D. (2013). PEEK dental implants: A review of the literature. The Journal of Oral Implantology, 39(6), 743–749.CrossRef
26.
Zurück zum Zitat Tayebi, L., et al. (2018). 3D-printed membrane for guided tissue regeneration. Materials Science and Engineering: C, 84, 148–158.CrossRef Tayebi, L., et al. (2018). 3D-printed membrane for guided tissue regeneration. Materials Science and Engineering: C, 84, 148–158.CrossRef
27.
Zurück zum Zitat Torshabi, M., Nojehdehian, H., & Tabatabaei, F. S. (2017). In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin. Journal of Investigative and Clinical Dentistry, 8(2), e12201.CrossRef Torshabi, M., Nojehdehian, H., & Tabatabaei, F. S. (2017). In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin. Journal of Investigative and Clinical Dentistry, 8(2), e12201.CrossRef
28.
Zurück zum Zitat Freedman, M., & Stassen, L. F. (2013). Commonly used topical oral wound dressing materials in dental and surgical practice--a literature review. Journal of the Irish Dental Association, 59(4), 190–195. Freedman, M., & Stassen, L. F. (2013). Commonly used topical oral wound dressing materials in dental and surgical practice--a literature review. Journal of the Irish Dental Association, 59(4), 190–195.
29.
Zurück zum Zitat Selvi, F., et al. (2016). Effects of different suture materials on tissue healing. Journal of Istanbul University Faculty of Dentistry, 50(1), 35–42.CrossRef Selvi, F., et al. (2016). Effects of different suture materials on tissue healing. Journal of Istanbul University Faculty of Dentistry, 50(1), 35–42.CrossRef
30.
Zurück zum Zitat Hallmann, L., Ulmer, P., & Kern, M. (2018). Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 82, 355–370.CrossRef Hallmann, L., Ulmer, P., & Kern, M. (2018). Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 82, 355–370.CrossRef
31.
Zurück zum Zitat McLaren, E. A., & Figueira, J. (2015). Updating classifications of ceramic dental materials: A guide to material selection. Compendium of Continuing Education in Dentistry, 36(6), 400–405; quiz 406, 416. McLaren, E. A., & Figueira, J. (2015). Updating classifications of ceramic dental materials: A guide to material selection. Compendium of Continuing Education in Dentistry, 36(6), 400–405; quiz 406, 416.
32.
Zurück zum Zitat Silva, L. H. D., et al. (2017). Dental ceramics: A review of new materials and processing methods. Brazilian Oral Research, 31(suppl 1), e58.CrossRef Silva, L. H. D., et al. (2017). Dental ceramics: A review of new materials and processing methods. Brazilian Oral Research, 31(suppl 1), e58.CrossRef
33.
Zurück zum Zitat Turon-Vinas, M., & Anglada, M. (2018). Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34(3), 365–375.CrossRef Turon-Vinas, M., & Anglada, M. (2018). Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34(3), 365–375.CrossRef
34.
Zurück zum Zitat Zhang, Y., & Kelly, J. R. (2017). Dental ceramics for restoration and metal veneering. Dental Clinics of North America, 61(4), 797–819.CrossRef Zhang, Y., & Kelly, J. R. (2017). Dental ceramics for restoration and metal veneering. Dental Clinics of North America, 61(4), 797–819.CrossRef
35.
Zurück zum Zitat Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel), 10(4). Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel), 10(4).
36.
Zurück zum Zitat Prati, C., & Gandolfi, M. G. (2015). Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental Materials, 31(4), 351–370.CrossRef Prati, C., & Gandolfi, M. G. (2015). Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental Materials, 31(4), 351–370.CrossRef
37.
Zurück zum Zitat Xu, H. H., et al. (2017). Calcium phosphate cements for bone engineering and their biological properties. Bone Research, 5, 17056.CrossRef Xu, H. H., et al. (2017). Calcium phosphate cements for bone engineering and their biological properties. Bone Research, 5, 17056.CrossRef
38.
Zurück zum Zitat Ali, S., Farooq, I., & Iqbal, K. (2014). A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. The Saudi Dental Journal, 26(1), 1–5.CrossRef Ali, S., Farooq, I., & Iqbal, K. (2014). A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. The Saudi Dental Journal, 26(1), 1–5.CrossRef
39.
Zurück zum Zitat Chen, L., Shen, H., & Suh, B. I. (2013). Bioactive dental restorative materials: A review. American Journal of Dentistry, 26(4), 219–227. Chen, L., Shen, H., & Suh, B. I. (2013). Bioactive dental restorative materials: A review. American Journal of Dentistry, 26(4), 219–227.
40.
Zurück zum Zitat Ahangari, Z., et al. (2017). Comparison of the antimicrobial efficacy of calcium hydroxide and photodynamic therapy against Enterococcus faecalis and Candida albicans in teeth with periapical lesions; an in vivo study. Journal of Lasers in Medical Science, 8(2), 72–78.MathSciNetCrossRef Ahangari, Z., et al. (2017). Comparison of the antimicrobial efficacy of calcium hydroxide and photodynamic therapy against Enterococcus faecalis and Candida albicans in teeth with periapical lesions; an in vivo study. Journal of Lasers in Medical Science, 8(2), 72–78.MathSciNetCrossRef
41.
Zurück zum Zitat Torabinejad, M., Parirokh, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview – part II: Other clinical applications and complications. International Endodontic Journal, 51(3), 284–317.CrossRef Torabinejad, M., Parirokh, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview – part II: Other clinical applications and complications. International Endodontic Journal, 51(3), 284–317.CrossRef
42.
Zurück zum Zitat Raghavendra, S. S., et al. (2017). Bioceramics in endodontics – A review. Journal of Istanbul University Faculty of Dentistry, 51(3 Suppl 1), S128–S137. Raghavendra, S. S., et al. (2017). Bioceramics in endodontics – A review. Journal of Istanbul University Faculty of Dentistry, 51(3 Suppl 1), S128–S137.
43.
Zurück zum Zitat Cionca, N., Hashim, D., & Mombelli, A. (2017). Zirconia dental implants: Where are we now, and where are we heading? Periodontology 2000, 73(1), 241–258.CrossRef Cionca, N., Hashim, D., & Mombelli, A. (2017). Zirconia dental implants: Where are we now, and where are we heading? Periodontology 2000, 73(1), 241–258.CrossRef
44.
Zurück zum Zitat Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine, 26(3), 533–537.CrossRef Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine, 26(3), 533–537.CrossRef
45.
Zurück zum Zitat Ilie, N., & Hickel, R. (2011). Resin composite restorative materials. Australian Dental Journal, 56(Suppl 1), 59–66.CrossRef Ilie, N., & Hickel, R. (2011). Resin composite restorative materials. Australian Dental Journal, 56(Suppl 1), 59–66.CrossRef
46.
Zurück zum Zitat Vaderhobli, R. M. (2011). Advances in dental materials. Dental Clinics of North America, 55(3), 619–25, x.CrossRef Vaderhobli, R. M. (2011). Advances in dental materials. Dental Clinics of North America, 55(3), 619–25, x.CrossRef
47.
Zurück zum Zitat Ikemura, K., et al. (2008). A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dental Materials Journal, 27(3), 315–339.CrossRef Ikemura, K., et al. (2008). A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dental Materials Journal, 27(3), 315–339.CrossRef
48.
Zurück zum Zitat Kramer, N., & Frankenberger, R. (2007). Compomers in restorative therapy of children: A literature review. International Journal of Paediatric Dentistry, 17(1), 2–9.CrossRef Kramer, N., & Frankenberger, R. (2007). Compomers in restorative therapy of children: A literature review. International Journal of Paediatric Dentistry, 17(1), 2–9.CrossRef
49.
Zurück zum Zitat Tabatabaei, F. S., et al. (2016). Different methods of dentin processing for application in bone tissue engineering: A systematic review. Journal of Biomedical Materials Research. Part A, 104(10), 2616–2627.CrossRef Tabatabaei, F. S., et al. (2016). Different methods of dentin processing for application in bone tissue engineering: A systematic review. Journal of Biomedical Materials Research. Part A, 104(10), 2616–2627.CrossRef
50.
Zurück zum Zitat Singh, J., et al. (2016). Bone Gaft materials: Dental aspects. International Journal of Novel Research in Healhcare and Nursing, 3(1), 99–103. Singh, J., et al. (2016). Bone Gaft materials: Dental aspects. International Journal of Novel Research in Healhcare and Nursing, 3(1), 99–103.
Metadaten
Titel
Biomedical Materials in Dentistry
verfasst von
Fahimeh Sadat Tabatabaei
Regine Torres
Lobat Tayebi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_2

Neuer Inhalt