Skip to main content

2011 | OriginalPaper | Buchkapitel

Brain Tissue Mechanical Properties

verfasst von : Lynne E. Bilston

Erschienen in: Neural Tissue Biomechanics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brain tissue is a complex multiphase material. Its mechanical behaviour arises from the inherent viscoelastic nature of the neural and supporting cellular components and their interaction with the vasculature and interstitial fluid. Brain behaves as a very soft, highly nonlinear viscoelastic solid. It has been mechanically characterised in shear, tension and compression, but despite decades of research into its behaviour, there is still considerable debate about its precise mechanical properties. This chapter aims to present the most reliable mechanical data for brain tissue, and to explain how this behaviour is affect by age, disease and a range of experimental conditions under which mechanical measurements are made.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arbogast, K.B., Margulies, S.S.: Regional differences in mechanical properties of the porcine central nervous system. In: Proceedings of the 41st Stapp Car Crash Conference, SAE (1997) Arbogast, K.B., Margulies, S.S.: Regional differences in mechanical properties of the porcine central nervous system. In: Proceedings of the 41st Stapp Car Crash Conference, SAE (1997)
2.
Zurück zum Zitat Arbogast, K.B., Margulies, S.S.: Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31(9), 801–807 (1998)CrossRef Arbogast, K.B., Margulies, S.S.: Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31(9), 801–807 (1998)CrossRef
3.
Zurück zum Zitat Arbogast, K.B., Meaney, D.F., et al.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of the 39th Stapp Car Crash Conference, Coronado, CA, SAE (1995) Arbogast, K.B., Meaney, D.F., et al.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of the 39th Stapp Car Crash Conference, Coronado, CA, SAE (1995)
4.
Zurück zum Zitat Atay, S.M., Kroenke, C.D., et al.: Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130(2), 021013 (2008)CrossRef Atay, S.M., Kroenke, C.D., et al.: Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130(2), 021013 (2008)CrossRef
5.
Zurück zum Zitat Bilston, L.E., Clarke, E.C., et al.: Brain tissue mechanical properties—making sense of 5 decades of test data. The Pathomechanics of Tissue Injury and Disease, and the Mechanophysiology of Healing. Gefen, A., Kerala, Research Signpost, pp. 1–18 (2008) Bilston, L.E., Clarke, E.C., et al.: Brain tissue mechanical properties—making sense of 5 decades of test data. The Pathomechanics of Tissue Injury and Disease, and the Mechanophysiology of Healing. Gefen, A., Kerala, Research Signpost, pp. 1–18 (2008)
6.
Zurück zum Zitat Bilston, L.E., Liu, Z., et al.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34(6), 377–385 (1997)CrossRef Bilston, L.E., Liu, Z., et al.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34(6), 377–385 (1997)CrossRef
7.
Zurück zum Zitat Bilston, L.E., Liu, Z., et al.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(4), 335–345 (2001) Bilston, L.E., Liu, Z., et al.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(4), 335–345 (2001)
8.
Zurück zum Zitat Brands, D.W.A., Bovendeerd, P. H. M., et al.: The large shear strain dynamic behaviour of in vitro porcine brain tissue and a silicone gel model material. Stapp Car Crash Conference, SAE (2000) Brands, D.W.A., Bovendeerd, P. H. M., et al.: The large shear strain dynamic behaviour of in vitro porcine brain tissue and a silicone gel model material. Stapp Car Crash Conference, SAE (2000)
9.
Zurück zum Zitat Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40(1), 117–124 (2007)CrossRef Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40(1), 117–124 (2007)CrossRef
10.
Zurück zum Zitat Cheng, S., Clarke, E.C., et al.: Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30(10), 1318–1337 (2008)CrossRef Cheng, S., Clarke, E.C., et al.: Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30(10), 1318–1337 (2008)CrossRef
11.
Zurück zum Zitat Chinzei, K., Miller, K.: Compression of swine brain tissue: experiment in vitro. J. Mech. Eng. Lab. 50(4), 106–115 (1996) Chinzei, K., Miller, K.: Compression of swine brain tissue: experiment in vitro. J. Mech. Eng. Lab. 50(4), 106–115 (1996)
12.
Zurück zum Zitat Clatz, O., Bondiau, P.-Y., et al.: In silico tumor growth: application to glioblastomas. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004. In: Barillot, C., Haynor, D.R., Hellier, P. vol. 3217 pp. 337–345. Springer, Berlin (2004) Clatz, O., Bondiau, P.-Y., et al.: In silico tumor growth: application to glioblastomas. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004. In: Barillot, C., Haynor, D.R., Hellier, P. vol. 3217 pp. 337–345. Springer, Berlin (2004)
13.
Zurück zum Zitat Czosnyka, M., Czosnyka, Z.H., et al.: Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J. Neurosurg. 94(3), 482–486 (2001)CrossRef Czosnyka, M., Czosnyka, Z.H., et al.: Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J. Neurosurg. 94(3), 482–486 (2001)CrossRef
14.
Zurück zum Zitat Deisboeck, T., Guiot, C.: Surgical impact on brain tumor invasion: a physical perspective. Ann. Surg. Innov. Res. 2(1), 1 (2008)CrossRef Deisboeck, T., Guiot, C.: Surgical impact on brain tumor invasion: a physical perspective. Ann. Surg. Innov. Res. 2(1), 1 (2008)CrossRef
15.
Zurück zum Zitat Dodgson, M.C.H.: Colloidal structure of brain. Biorheology 1(1), 21–30 (1962)MathSciNet Dodgson, M.C.H.: Colloidal structure of brain. Biorheology 1(1), 21–30 (1962)MathSciNet
16.
Zurück zum Zitat Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng.119(4), 423–432 (1997)CrossRef Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng.119(4), 423–432 (1997)CrossRef
17.
Zurück zum Zitat Engin, A.E., Wang, H.C.: A mathematical model to determine viscoelastic behavior of in vivo primate brain. J. Biomech. 3(3), 283–296 (1970)CrossRef Engin, A.E., Wang, H.C.: A mathematical model to determine viscoelastic behavior of in vivo primate brain. J. Biomech. 3(3), 283–296 (1970)CrossRef
18.
Zurück zum Zitat Estes, M.S., McElhaney, J.H.: Response of brain tissue to compressive loading. ASME Paper 70-BHF-13 (1970) Estes, M.S., McElhaney, J.H.: Response of brain tissue to compressive loading. ASME Paper 70-BHF-13 (1970)
19.
Zurück zum Zitat Fallenstein, G.T., Hulce, V.D., et al.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2(3), 217–226 (1969)CrossRef Fallenstein, G.T., Hulce, V.D., et al.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2(3), 217–226 (1969)CrossRef
20.
Zurück zum Zitat Franke, E.K.: The response of the human skull to mechanical vibrations. Wright-Patterson Air Force Base, Ohio. WADC Technical Report No. 54–24 (1954) Franke, E.K.: The response of the human skull to mechanical vibrations. Wright-Patterson Air Force Base, Ohio. WADC Technical Report No. 54–24 (1954)
21.
Zurück zum Zitat Galford, J.E., McElhaney, J.H.: A viscoelastic study of scalp, brain, and dura. J. Biomech. 3, 211–221 (1970)CrossRef Galford, J.E., McElhaney, J.H.: A viscoelastic study of scalp, brain, and dura. J. Biomech. 3, 211–221 (1970)CrossRef
22.
Zurück zum Zitat Garo, A., Hrapko, M., et al.: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation. Biorheology 44(1), 51–59 (2007) Garo, A., Hrapko, M., et al.: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation. Biorheology 44(1), 51–59 (2007)
23.
Zurück zum Zitat Gefen, A., Gefen, N., et al.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20(11), 1163–1177 (2003)CrossRef Gefen, A., Gefen, N., et al.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20(11), 1163–1177 (2003)CrossRef
24.
Zurück zum Zitat Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37(9), 1339–1352 (2004)CrossRef Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37(9), 1339–1352 (2004)CrossRef
25.
Zurück zum Zitat Hrapko, M., Dommelen, J.A.W.v., et al.: The influence of test conditions on characterization of the mechanical properties of brain tissue. J. Biomech. Eng. 130(3), 031003 (2008)CrossRef Hrapko, M., Dommelen, J.A.W.v., et al.: The influence of test conditions on characterization of the mechanical properties of brain tissue. J. Biomech. Eng. 130(3), 031003 (2008)CrossRef
26.
Zurück zum Zitat Hyun, K., Kim, S.H., et al.: Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107(1–3), 51–65 (2002)MATHCrossRef Hyun, K., Kim, S.H., et al.: Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107(1–3), 51–65 (2002)MATHCrossRef
27.
Zurück zum Zitat Klatt, D., Hamhaber, U., et al.: Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52(24):7281–7289 (2007)CrossRef Klatt, D., Hamhaber, U., et al.: Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52(24):7281–7289 (2007)CrossRef
28.
Zurück zum Zitat Koeneman, J.-B.: Viscoelastic properties of brain tissue. M.Sc. thesis, Case Institute of Technology (1966) Koeneman, J.-B.: Viscoelastic properties of brain tissue. M.Sc. thesis, Case Institute of Technology (1966)
29.
Zurück zum Zitat Larrat, B., Chan, Q.C., et al.: Anisotropic viscoelastic properties of the corpus callosum—application of high-resolution 3D MR-elastography to an Alzheimer mouse model. Ultrasonics symposium IEEE (2007) Larrat, B., Chan, Q.C., et al.: Anisotropic viscoelastic properties of the corpus callosum—application of high-resolution 3D MR-elastography to an Alzheimer mouse model. Ultrasonics symposium IEEE (2007)
30.
Zurück zum Zitat Metz, H., McElhaney, J., et al.: A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3, 453–458 (1970)CrossRef Metz, H., McElhaney, J., et al.: A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3, 453–458 (1970)CrossRef
31.
Zurück zum Zitat Miller, K.: Biomechanics of soft tissues. Med. Sci. Monitor 6(1), 158–167 (2000) Miller, K.: Biomechanics of soft tissues. Med. Sci. Monitor 6(1), 158–167 (2000)
32.
Zurück zum Zitat Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11–12), 1115–1121 (1997)CrossRef Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11–12), 1115–1121 (1997)CrossRef
33.
Zurück zum Zitat Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35(4), 483–490 (2002)CrossRef Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35(4), 483–490 (2002)CrossRef
34.
Zurück zum Zitat Miller, K., Chinzei, K., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11), 1369–1376 (2000)CrossRef Miller, K., Chinzei, K., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11), 1369–1376 (2000)CrossRef
35.
Zurück zum Zitat Nicolle, S., Lounis, M., et al.: Shear linear behavior of brain tissue over a large frequency range. Biorheology 42(3), 209–223 (2005) Nicolle, S., Lounis, M., et al.: Shear linear behavior of brain tissue over a large frequency range. Biorheology 42(3), 209–223 (2005)
36.
Zurück zum Zitat Pena, A., Harris, N.G., et al.: Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochirurgica 81, 59–63 (2002) (Suppl.) Pena, A., Harris, N.G., et al.: Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochirurgica 81, 59–63 (2002) (Suppl.)
37.
Zurück zum Zitat Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2), 244–252 (2002)CrossRef Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2), 244–252 (2002)CrossRef
38.
Zurück zum Zitat Sack, I., Beierbach, B., et al.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3), 652–657 (2009)CrossRef Sack, I., Beierbach, B., et al.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3), 652–657 (2009)CrossRef
39.
Zurück zum Zitat Schiavone, P., Chassat, F., et al.: In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13(4), 673–678 (2009)CrossRef Schiavone, P., Chassat, F., et al.: In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13(4), 673–678 (2009)CrossRef
40.
Zurück zum Zitat Shen, F., Tay, T.E., et al.: Modified Bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. 128(5), 797–801 (2006)CrossRef Shen, F., Tay, T.E., et al.: Modified Bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. 128(5), 797–801 (2006)CrossRef
41.
Zurück zum Zitat Shuck, L.Z., Advani, S.H.: Rheological response of human brain tissue in shear. J. Basic Eng. 94, 905–911 (1972)CrossRef Shuck, L.Z., Advani, S.H.: Rheological response of human brain tissue in shear. J. Basic Eng. 94, 905–911 (1972)CrossRef
42.
Zurück zum Zitat Takhounts, E., Crandall, J.R., et al.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003) Takhounts, E., Crandall, J.R., et al.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003)
43.
Zurück zum Zitat Tamura, A., Hayashi, S., et al.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2(3), 115–126 (2007)CrossRef Tamura, A., Hayashi, S., et al.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2(3), 115–126 (2007)CrossRef
44.
Zurück zum Zitat Thibault, K.L., Margulies, S.S.: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31(12), 1119–1126 (1998)CrossRef Thibault, K.L., Margulies, S.S.: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31(12), 1119–1126 (1998)CrossRef
45.
Zurück zum Zitat Velardi, F., Fraternali, F., et al.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006)CrossRef Velardi, F., Fraternali, F., et al.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006)CrossRef
46.
Zurück zum Zitat Wang, H.C., Wineman, A.S.: A mathematical model for the determination of viscoelastic behavior of brain in vivo. II. Relaxation response. J. Biomech. 5(6), 571–580 (1972)CrossRef Wang, H.C., Wineman, A.S.: A mathematical model for the determination of viscoelastic behavior of brain in vivo. II. Relaxation response. J. Biomech. 5(6), 571–580 (1972)CrossRef
47.
Zurück zum Zitat Weaver, J.B., Perrinez, P.R., et al.: The effects of interstitial tissue pressure on the measured shear modulus in vivo. Medical Imaging: Physiology, Function, and Structure from Medical Images, In: Proceedings of SPIE. Manduca, A., Hu, X.P., SPIE. vol. 6511. pp. 1A-1–1A-11 (2007) Weaver, J.B., Perrinez, P.R., et al.: The effects of interstitial tissue pressure on the measured shear modulus in vivo. Medical Imaging: Physiology, Function, and Structure from Medical Images, In: Proceedings of SPIE. Manduca, A., Hu, X.P., SPIE. vol. 6511. pp. 1A-1–1A-11 (2007)
48.
Zurück zum Zitat Wilhelm, M., Maring, D., et al.: Fourier-transform rheology. Rheologica Acta 37(4), 399–405 (1998)CrossRef Wilhelm, M., Maring, D., et al.: Fourier-transform rheology. Rheologica Acta 37(4), 399–405 (1998)CrossRef
49.
Zurück zum Zitat Wittek, A., Miller, K., et al.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40(4), 919–929 (2007)CrossRef Wittek, A., Miller, K., et al.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40(4), 919–929 (2007)CrossRef
50.
Zurück zum Zitat Wuerfel, J., Paul, F., et al.: MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage 49(3), 2520–2525 (2010)CrossRef Wuerfel, J., Paul, F., et al.: MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage 49(3), 2520–2525 (2010)CrossRef
51.
Zurück zum Zitat Xu, L., Lin, Y., et al.: Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiologica 48(3), 327–330 (2007)CrossRef Xu, L., Lin, Y., et al.: Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiologica 48(3), 327–330 (2007)CrossRef
Metadaten
Titel
Brain Tissue Mechanical Properties
verfasst von
Lynne E. Bilston
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2010_36

Neuer Inhalt