Skip to main content

2019 | OriginalPaper | Buchkapitel

Bridging Machine Learning and Cryptography in Defence Against Adversarial Attacks

verfasst von : Olga Taran, Shideh Rezaeifar, Slava Voloshynovskiy

Erschienen in: Computer Vision – ECCV 2018 Workshops

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decade, deep learning algorithms have become very popular thanks to the achieved performance in many machine learning and computer vision tasks. However, most of the deep learning architectures are vulnerable to so called adversarial examples. This questions the security of deep neural networks (DNN) for many security- and trust-sensitive domains. The majority of the proposed existing adversarial attacks are based on the differentiability of the DNN cost function. Defence strategies are mostly based on machine learning and signal processing principles that either try to detect-reject or filter out the adversarial perturbations and completely neglect the classical cryptographic component in the defence.
In this work, we propose a new defence mechanism based on the second Kerckhoffs’s cryptographic principle which states that the defence and classification algorithm are supposed to be known, but not the key.
To be compliant with the assumption that the attacker does not have access to the secret key, we will primarily focus on a gray-box scenario and do not address a white-box one. More particularly, we assume that the attacker does not have direct access to the secret block, but (a) he completely knows the system architecture, (b) he has access to the data used for training and testing and (c) he can observe the output of the classifier for each given input. We show empirically that our system is efficient against most famous state-of-the-art attacks in black-box and gray-box scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Massey, J.L.: Cryptography: fundamentals and applications. In: Copies of transparencies, Advanced Technology Seminars, vol. 109, p. 119 (1993) Massey, J.L.: Cryptography: fundamentals and applications. In: Copies of transparencies, Advanced Technology Seminars, vol. 109, p. 119 (1993)
3.
Zurück zum Zitat Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017) Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:​1708.​07747 (2017)
4.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:​1412.​6572 (2014)
5.
Zurück zum Zitat Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017) Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)
6.
Zurück zum Zitat Yuan, X., He, P., Zhu, Q., Bhat, R.R., Li, X.: Adversarial examples: attacks and defenses for deep learning. arXiv preprint arXiv:1712.07107 (2017) Yuan, X., He, P., Zhu, Q., Bhat, R.R., Li, X.: Adversarial examples: attacks and defenses for deep learning. arXiv preprint arXiv:​1712.​07107 (2017)
8.
Zurück zum Zitat Dong, Y., et al.: Boosting adversarial attacks with momentum (2017) Dong, Y., et al.: Boosting adversarial attacks with momentum (2017)
10.
Zurück zum Zitat Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.: Ensemble adversarial training: attacks and defenses. arXiv preprint arXiv:1705.07204 (2017) Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.: Ensemble adversarial training: attacks and defenses. arXiv preprint arXiv:​1705.​07204 (2017)
11.
12.
Zurück zum Zitat Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016) Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)
13.
Zurück zum Zitat Moosavi Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Number EPFL-CONF-218057 (2016) Moosavi Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Number EPFL-CONF-218057 (2016)
14.
Zurück zum Zitat Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. arXiv preprint (2017) Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. arXiv preprint (2017)
15.
Zurück zum Zitat Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14. ACM (2017) Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14. ACM (2017)
16.
Zurück zum Zitat He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses: ensembles of weak defenses are not strong. arXiv preprint arXiv:1706.04701 (2017) He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses: ensembles of weak defenses are not strong. arXiv preprint arXiv:​1706.​04701 (2017)
17.
Zurück zum Zitat Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420 (2018) Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. arXiv preprint arXiv:​1802.​00420 (2018)
18.
Zurück zum Zitat Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM (2017) Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM (2017)
19.
20.
Zurück zum Zitat Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE (2016) Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE (2016)
21.
22.
Zurück zum Zitat Wu, Y., Bamman, D., Russell, S.: Adversarial training for relation extraction. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1778–1783 (2017) Wu, Y., Bamman, D., Russell, S.: Adversarial training for relation extraction. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1778–1783 (2017)
23.
Zurück zum Zitat Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267 (2017) Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. arXiv preprint arXiv:​1702.​04267 (2017)
24.
Zurück zum Zitat Hendrycks, D., Gimpel, K.: Early methods for detecting adversarial images (2017) Hendrycks, D., Gimpel, K.: Early methods for detecting adversarial images (2017)
25.
Zurück zum Zitat Li, X., Li, F.: Adversarial examples detection in deep networks with convolutional filter statistics. CoRR, abs/1612.07767 7 (2016) Li, X., Li, F.: Adversarial examples detection in deep networks with convolutional filter statistics. CoRR, abs/1612.07767 7 (2016)
26.
Zurück zum Zitat Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017) Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:​1703.​00410 (2017)
28.
Zurück zum Zitat Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Towards proving the adversarial robustness of deep neural networks. arXiv preprint arXiv:1709.02802 (2017) Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Towards proving the adversarial robustness of deep neural networks. arXiv preprint arXiv:​1709.​02802 (2017)
29.
Zurück zum Zitat Meng, D., Chen, H.: Magnet: a two-pronged defense against adversarial examples. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 135–147. ACM (2017) Meng, D., Chen, H.: Magnet: a two-pronged defense against adversarial examples. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 135–147. ACM (2017)
30.
Zurück zum Zitat Lee, S., Lee, J.: Defensive denoising methods against adversarial attack (2018) Lee, S., Lee, J.: Defensive denoising methods against adversarial attack (2018)
31.
Zurück zum Zitat Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversarial examples. arXiv preprint arXiv:1412.5068 (2014) Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversarial examples. arXiv preprint arXiv:​1412.​5068 (2014)
Metadaten
Titel
Bridging Machine Learning and Cryptography in Defence Against Adversarial Attacks
verfasst von
Olga Taran
Shideh Rezaeifar
Slava Voloshynovskiy
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11012-3_23