Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Buckling and Post-buckling of Beams

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents buckling and post-buckling analysis of straight beams under thermal and mechanical loads. The Euler and Timoshenko beam theories are considered and buckling and postbuckling behaviors are discussed. The buckling analysis of beams with piezoelectric layers is presented and the effect of piezo-control on the beam stability is analyzed. The vibration of thermo-electrically excited beams in the state of buckling and post-buckling is discussed and the chapter concludes with the thermal dynamic analysis of beams. The beam material in this chapter is assumed to be functionally graded, where the presented formulations may be simply reduced to the beams with isotropic/homogeneous material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brush, D. O., & Almorth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill. Brush, D. O., & Almorth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.
2.
Zurück zum Zitat Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses, advanced theory and applications. Netherland: Springer.MATH Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses, advanced theory and applications. Netherland: Springer.MATH
3.
Zurück zum Zitat Praveen, G. N., & Reddy, J. N. (1998). Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35(33), 4457–4476.MATHCrossRef Praveen, G. N., & Reddy, J. N. (1998). Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35(33), 4457–4476.MATHCrossRef
4.
Zurück zum Zitat Suresh, S., & Mortensen, A. (1998). Fundamentals of functionally graded materials. London: IOM Communications Ltd. Suresh, S., & Mortensen, A. (1998). Fundamentals of functionally graded materials. London: IOM Communications Ltd.
5.
Zurück zum Zitat Huang, Y., & Li, X. F. (2010). Buckling of functionally graded circular columns including shear deformation. Materials and Design, 31(7), 3159–3166.CrossRef Huang, Y., & Li, X. F. (2010). Buckling of functionally graded circular columns including shear deformation. Materials and Design, 31(7), 3159–3166.CrossRef
6.
Zurück zum Zitat Zhao, F. Q., Wang, Z., & Liu, H. (2007). Thermal post-buckling analyses of functionally graded material rod. Applied Mathematics and Mechanics, 28(1), 59–67.MATHCrossRef Zhao, F. Q., Wang, Z., & Liu, H. (2007). Thermal post-buckling analyses of functionally graded material rod. Applied Mathematics and Mechanics, 28(1), 59–67.MATHCrossRef
7.
Zurück zum Zitat Li, S., Zhang, J., & Zhao, Y. (2006). Thermal post-buckling of functionally graded material timoshenko beams. Applied Mathematics and Mechanics, 27(6), 803–810.MATHCrossRef Li, S., Zhang, J., & Zhao, Y. (2006). Thermal post-buckling of functionally graded material timoshenko beams. Applied Mathematics and Mechanics, 27(6), 803–810.MATHCrossRef
8.
Zurück zum Zitat Kiani, Y., & Eslami, M. R. (2010). Thermal buckling analysis of functionally graded material beams. International Journal of Mechanics and Materials in Design, 6(3), 229–238.CrossRef Kiani, Y., & Eslami, M. R. (2010). Thermal buckling analysis of functionally graded material beams. International Journal of Mechanics and Materials in Design, 6(3), 229–238.CrossRef
9.
Zurück zum Zitat Aydogdu, M. (2008). Semi-inverse method for vibration and buckling of axially functionally graded beams. Journal of Reinforced Plastics and Composites, 27(7), 683–691.CrossRef Aydogdu, M. (2008). Semi-inverse method for vibration and buckling of axially functionally graded beams. Journal of Reinforced Plastics and Composites, 27(7), 683–691.CrossRef
10.
Zurück zum Zitat Ke, L. L., Yang, J., & Kitipornchai, S. (2009). Postbuckling analysis of edge cracked functionally graded timoshenko beams under end-shortening. Composite Structures, 90(2), 152–160.CrossRef Ke, L. L., Yang, J., & Kitipornchai, S. (2009). Postbuckling analysis of edge cracked functionally graded timoshenko beams under end-shortening. Composite Structures, 90(2), 152–160.CrossRef
11.
Zurück zum Zitat Ke, L. L., Yang, J., Kitipornchai, S., & Xiang, Y. (2009). Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6), 488–502.CrossRef Ke, L. L., Yang, J., Kitipornchai, S., & Xiang, Y. (2009). Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6), 488–502.CrossRef
12.
Zurück zum Zitat Ma, L. S., & Lee, D. W. (2011). A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading. Composite Structures, 93(2), 831–842.CrossRef Ma, L. S., & Lee, D. W. (2011). A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading. Composite Structures, 93(2), 831–842.CrossRef
13.
Zurück zum Zitat Anandrao, K. S., Gupta, R. K., Ramchandran, P., & Rao, G. V. (2010). Thermal post-buckling analysis of uniform slender functionally graded material beams. Structural Engineering and Mechanics, 36(5), 545–560.CrossRef Anandrao, K. S., Gupta, R. K., Ramchandran, P., & Rao, G. V. (2010). Thermal post-buckling analysis of uniform slender functionally graded material beams. Structural Engineering and Mechanics, 36(5), 545–560.CrossRef
14.
Zurück zum Zitat Ma, L. S., & Lee, D. W. (2011). Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading. European Journal of Mechanics A Solids, 31(1), 13–20.MATHMathSciNetCrossRef Ma, L. S., & Lee, D. W. (2011). Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading. European Journal of Mechanics A Solids, 31(1), 13–20.MATHMathSciNetCrossRef
15.
Zurück zum Zitat Wang, C. M., Wang, C. Y., & Reddy, J. N. (2004). Exact solutions for buckling of structural members. Boca Raton: CRC Press.CrossRef Wang, C. M., Wang, C. Y., & Reddy, J. N. (2004). Exact solutions for buckling of structural members. Boca Raton: CRC Press.CrossRef
16.
Zurück zum Zitat Reddy, J. N., & Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6), 593–626.CrossRef Reddy, J. N., & Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6), 593–626.CrossRef
17.
Zurück zum Zitat Kapuria, S., Ahmed, A., & Dumir, P. C. (2004). Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory. Composite Science and Technology, 64(16), 2463–2475.CrossRef Kapuria, S., Ahmed, A., & Dumir, P. C. (2004). Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory. Composite Science and Technology, 64(16), 2463–2475.CrossRef
18.
Zurück zum Zitat Chen, L. W., Lin, C. Y., & Wang, C. C. (2002). Dynamic stability analysis and control of a composite beam with piezoelectric layers. Composite Structures, 56(1), 97–109.CrossRef Chen, L. W., Lin, C. Y., & Wang, C. C. (2002). Dynamic stability analysis and control of a composite beam with piezoelectric layers. Composite Structures, 56(1), 97–109.CrossRef
19.
Zurück zum Zitat Bian, Z. G., Lim, C. W., & Chen, W. Q. (2006). On functionally graded beams with integrated surface piezoelectric layers. Composite Structures, 72(3), 339–351.CrossRef Bian, Z. G., Lim, C. W., & Chen, W. Q. (2006). On functionally graded beams with integrated surface piezoelectric layers. Composite Structures, 72(3), 339–351.CrossRef
20.
Zurück zum Zitat Alibeigloo, A. (2010). Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Composite Structures, 92(6), 1535–1543.CrossRef Alibeigloo, A. (2010). Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Composite Structures, 92(6), 1535–1543.CrossRef
21.
Zurück zum Zitat Gharib, A., Salehi, M., & Fazeli, S. (2008). Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators. Material Science and Engineering. A-Structures, 498(1–2), 110–114.CrossRef Gharib, A., Salehi, M., & Fazeli, S. (2008). Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators. Material Science and Engineering. A-Structures, 498(1–2), 110–114.CrossRef
22.
Zurück zum Zitat Li, S. R., Su, H. D., & Cheng, C. J. (2009). Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Applied Mathematics and Mechanics, 30(8), 969–982.MATHCrossRef Li, S. R., Su, H. D., & Cheng, C. J. (2009). Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Applied Mathematics and Mechanics, 30(8), 969–982.MATHCrossRef
23.
Zurück zum Zitat Kiani, Y., Taheri, S., & Eslami, M. R. (2011). Thermal buckling of piezoelectric functionally graded material beams. Journal of Thermal Stresses, 34(8), 835–850.CrossRef Kiani, Y., Taheri, S., & Eslami, M. R. (2011). Thermal buckling of piezoelectric functionally graded material beams. Journal of Thermal Stresses, 34(8), 835–850.CrossRef
24.
Zurück zum Zitat Kiani, Y., Rezaei, M., Taheri, S., & Eslami, M. R. (2011). Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams. International Journal of Mechanics and Materials in Design, 7(3), 185–197.CrossRef Kiani, Y., Rezaei, M., Taheri, S., & Eslami, M. R. (2011). Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams. International Journal of Mechanics and Materials in Design, 7(3), 185–197.CrossRef
25.
Zurück zum Zitat Liew, K. M., Yang, J., & Kitipornchai, S. (2003). Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 40(15), 3869–3892.MATHCrossRef Liew, K. M., Yang, J., & Kitipornchai, S. (2003). Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 40(15), 3869–3892.MATHCrossRef
26.
Zurück zum Zitat Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.CrossRef Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.CrossRef
27.
Zurück zum Zitat Shen, H. S. (2005). Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 42(23), 6101–6121.MATHCrossRef Shen, H. S. (2005). Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 42(23), 6101–6121.MATHCrossRef
28.
Zurück zum Zitat Shen, H. S. (2005). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composite Science and Technology, 65(11–12), 1675–1690.CrossRef Shen, H. S. (2005). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composite Science and Technology, 65(11–12), 1675–1690.CrossRef
29.
Zurück zum Zitat Shen, H. S., & Noda, N. (2007). Postbuckling of pressure-loaded FGM Hybrid cylindrical shells in thermal environments. Composite Structures, 77(4), 546–560.CrossRef Shen, H. S., & Noda, N. (2007). Postbuckling of pressure-loaded FGM Hybrid cylindrical shells in thermal environments. Composite Structures, 77(4), 546–560.CrossRef
30.
Zurück zum Zitat Li, S. R., Zhou, Y. H., & Zheng, X. (2002). Thermal post-buckling of a heated elastic rod with pinned-fixed ends. Journal of Thermal Stresses, 25(1), 45–56.CrossRef Li, S. R., Zhou, Y. H., & Zheng, X. (2002). Thermal post-buckling of a heated elastic rod with pinned-fixed ends. Journal of Thermal Stresses, 25(1), 45–56.CrossRef
31.
Zurück zum Zitat Librescu, L., Oh, S. Y., & Song, O. (2005). Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. Journal of Thermal Stresses, 28(6–7), 649–712.CrossRef Librescu, L., Oh, S. Y., & Song, O. (2005). Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. Journal of Thermal Stresses, 28(6–7), 649–712.CrossRef
32.
Zurück zum Zitat Bhangale, R. K., & Ganesan, N. (2006). Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. Journal of Sound and Vibration, 295(1–2), 294–316.CrossRef Bhangale, R. K., & Ganesan, N. (2006). Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. Journal of Sound and Vibration, 295(1–2), 294–316.CrossRef
33.
Zurück zum Zitat Fu, Y., Wang, J., & Mao, Y. (2012). Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36(8), 4324–4340.MATHMathSciNetCrossRef Fu, Y., Wang, J., & Mao, Y. (2012). Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36(8), 4324–4340.MATHMathSciNetCrossRef
34.
Zurück zum Zitat Kargani, A., Kiani, Y., & Eslami, M. R. (2013). Exact solution for non-linear stability of piezoelectric FGM Timishenko beam under thermo-electrical loads. Journal of Thermal Stresses, 36, 1056–1076.CrossRef Kargani, A., Kiani, Y., & Eslami, M. R. (2013). Exact solution for non-linear stability of piezoelectric FGM Timishenko beam under thermo-electrical loads. Journal of Thermal Stresses, 36, 1056–1076.CrossRef
35.
Zurück zum Zitat Reddy, J. N. (2003). Mechanics of laminated composite plates and shells, theory and application. Cambridge: CRC Press. Reddy, J. N. (2003). Mechanics of laminated composite plates and shells, theory and application. Cambridge: CRC Press.
36.
Zurück zum Zitat Tzou, H. S. (1993). Piezoelectric shells: distributed sensing and control of continua. Dordrecht: Kluwer Academic Publisher.CrossRef Tzou, H. S. (1993). Piezoelectric shells: distributed sensing and control of continua. Dordrecht: Kluwer Academic Publisher.CrossRef
37.
Zurück zum Zitat Yang, J. S. (2005). Introduction to the theory of piezoelectricity. New York: Springer.MATH Yang, J. S. (2005). Introduction to the theory of piezoelectricity. New York: Springer.MATH
38.
Zurück zum Zitat Yang, J. S. (2006). The mechanics of piezoelectric structures. Singapore: World Scientific Publishing.CrossRef Yang, J. S. (2006). The mechanics of piezoelectric structures. Singapore: World Scientific Publishing.CrossRef
39.
Zurück zum Zitat Yang, J. S., & Zhang, W. (1999). A thickness-shear high voltage piezoelectric transformer. International Journal of Applied Electromagnetics and Mechanics, 21(2), 131–141. Yang, J. S., & Zhang, W. (1999). A thickness-shear high voltage piezoelectric transformer. International Journal of Applied Electromagnetics and Mechanics, 21(2), 131–141.
40.
Zurück zum Zitat Yang, J. S., Fang, H. Y., & Jiang, Q. (1999). Analysis of a ceramic bimorph piezoelectric gyroscope. International Journal of Applied Electromagnetics and Mechanics, 10(6), 459–473. Yang, J. S., Fang, H. Y., & Jiang, Q. (1999). Analysis of a ceramic bimorph piezoelectric gyroscope. International Journal of Applied Electromagnetics and Mechanics, 10(6), 459–473.
41.
Zurück zum Zitat Yang, J. S. (1998). Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. International Journal of Applied Electromagnetics and Mechanics, 9(4), 409–420. Yang, J. S. (1998). Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. International Journal of Applied Electromagnetics and Mechanics, 9(4), 409–420.
42.
Zurück zum Zitat Wang, Q., & Quek, S. T. (2012). Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator. Smart Materials and Structures, 9(1), 103–109.CrossRef Wang, Q., & Quek, S. T. (2012). Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator. Smart Materials and Structures, 9(1), 103–109.CrossRef
43.
Zurück zum Zitat Wang, Q., & Quek, S. T. (2002). A model for the analysis of beams with embedded piezoelectric layers. Journal of Intelligent Materials Systems and Structures, 13(1), 61–70.CrossRef Wang, Q., & Quek, S. T. (2002). A model for the analysis of beams with embedded piezoelectric layers. Journal of Intelligent Materials Systems and Structures, 13(1), 61–70.CrossRef
44.
Zurück zum Zitat Ke, L. L., Wang, Y. S., & Wang, Z. D. (2012). Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures, 94(6), 2038–2047.CrossRef Ke, L. L., Wang, Y. S., & Wang, Z. D. (2012). Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures, 94(6), 2038–2047.CrossRef
45.
Zurück zum Zitat Ke L. L., & Wang Y. S. (2012). Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Materials and Structures, 21(2), Article No. 025018. Ke L. L., & Wang Y. S. (2012). Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Materials and Structures, 21(2), Article No. 025018.
46.
Zurück zum Zitat Pradhan, S. C., & Murmu, T. (2009). Thermo-mechanical vibration of FGM sandwich bam under variable elastic foundations using differential quadrature. Journal of Sound and Vibration, 321(1–2), 342–362.CrossRef Pradhan, S. C., & Murmu, T. (2009). Thermo-mechanical vibration of FGM sandwich bam under variable elastic foundations using differential quadrature. Journal of Sound and Vibration, 321(1–2), 342–362.CrossRef
47.
Zurück zum Zitat Xiang, H. J., & Yang, J. (2008). Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Composites Part B : Engineering, 39(2), 292–303.CrossRef Xiang, H. J., & Yang, J. (2008). Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Composites Part B : Engineering, 39(2), 292–303.CrossRef
48.
Zurück zum Zitat Xia, X. K., & Shen, H. S. (2008). Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment. Journal of Sound and Vibration, 314(1–2), 254–274.CrossRef Xia, X. K., & Shen, H. S. (2008). Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment. Journal of Sound and Vibration, 314(1–2), 254–274.CrossRef
49.
Zurück zum Zitat Neukirch, S., Frelat, J., Goriely, A., & Maurini, C. (2012). Vibrations of post-buckled rods: the singular inextensible limit. Journal of Sound and Vibration, 331(3), 704–720.CrossRef Neukirch, S., Frelat, J., Goriely, A., & Maurini, C. (2012). Vibrations of post-buckled rods: the singular inextensible limit. Journal of Sound and Vibration, 331(3), 704–720.CrossRef
50.
Zurück zum Zitat Huang, D. J., Ding, H. J., & Chen, W. Q. (2007). Piezoelasticity solutions for functionally graded piezoelectric beams. Smart Materials and Structures, 16(3), 687–695.CrossRef Huang, D. J., Ding, H. J., & Chen, W. Q. (2007). Piezoelasticity solutions for functionally graded piezoelectric beams. Smart Materials and Structures, 16(3), 687–695.CrossRef
51.
Zurück zum Zitat Shi, Z. F. (2002). General solution of a density functionally gradient piezoelectric cantilever and its applications. Smart Materials and Structures, 11(1), 122–129.CrossRef Shi, Z. F. (2002). General solution of a density functionally gradient piezoelectric cantilever and its applications. Smart Materials and Structures, 11(1), 122–129.CrossRef
52.
Zurück zum Zitat Shi, Z. F., & Chen, Y. (2004). Functionally graded piezoelectric cantilever beam under load. Archive of Applied Mechanics, 74(3–4), 237–247.MATHCrossRef Shi, Z. F., & Chen, Y. (2004). Functionally graded piezoelectric cantilever beam under load. Archive of Applied Mechanics, 74(3–4), 237–247.MATHCrossRef
53.
Zurück zum Zitat Liu, T. T., & Shi, Z. F. (2004). Bending behavior of functionally gradient piezoelectric cantilever. Ferroelectrics, 308(1), 43–51.CrossRef Liu, T. T., & Shi, Z. F. (2004). Bending behavior of functionally gradient piezoelectric cantilever. Ferroelectrics, 308(1), 43–51.CrossRef
54.
Zurück zum Zitat Kruusing, A. (2006). Analytical and optimization of loaded cantilever beam microactuators. Smart Materials and Structures, 9(2), 186–196.CrossRef Kruusing, A. (2006). Analytical and optimization of loaded cantilever beam microactuators. Smart Materials and Structures, 9(2), 186–196.CrossRef
55.
Zurück zum Zitat Joshi, S., Mukherjee, A., & Schmauder, S. (2003). Exact solutions for characterization of electro-elastically materials. Computational Material Science, 28(3–4), 548–555.CrossRef Joshi, S., Mukherjee, A., & Schmauder, S. (2003). Exact solutions for characterization of electro-elastically materials. Computational Material Science, 28(3–4), 548–555.CrossRef
56.
Zurück zum Zitat Joshi, S., Mukherjee, A., & Schmauder, S. (2003). Numerical characterization of functionally graded active materials under electrical and thermal fields. Smart Materials and Structures, 12(4), 571–579.CrossRef Joshi, S., Mukherjee, A., & Schmauder, S. (2003). Numerical characterization of functionally graded active materials under electrical and thermal fields. Smart Materials and Structures, 12(4), 571–579.CrossRef
57.
Zurück zum Zitat Lee, H. J. (2005). Layerwise laminate analysis of functionally graded piezoelectric Bimorph beams. Journal of Intelligent Material Systems and Structures, 16(2), 365–371.CrossRef Lee, H. J. (2005). Layerwise laminate analysis of functionally graded piezoelectric Bimorph beams. Journal of Intelligent Material Systems and Structures, 16(2), 365–371.CrossRef
58.
Zurück zum Zitat Lee H. J. (2003). Layerwise analysis of thermal shape control in graded piezoelectric beams. ASME 2003 International Mechanical Engineering Congress and Exposition, Paper No. IMECE2003-41902, 68(2), 79–87. Lee H. J. (2003). Layerwise analysis of thermal shape control in graded piezoelectric beams. ASME 2003 International Mechanical Engineering Congress and Exposition, Paper No. IMECE2003-41902, 68(2), 79–87.
59.
Zurück zum Zitat Yang, J., & Xiang, H. J. (2007). Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators. Smart Materials and Structures, 16(3), 784–797.CrossRef Yang, J., & Xiang, H. J. (2007). Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators. Smart Materials and Structures, 16(3), 784–797.CrossRef
60.
Zurück zum Zitat Komeili A., Akbarzadeh A. H., Doroushi A., & Eslami M. R. (2001). Static analysis of functionally graded piezoelectric beams under Thermo-electro-mechanical Loads. Advances in Mechanical Engineering, Article No. 153731. Komeili A., Akbarzadeh A. H., Doroushi A., & Eslami M. R. (2001). Static analysis of functionally graded piezoelectric beams under Thermo-electro-mechanical Loads. Advances in Mechanical Engineering, Article No. 153731.
61.
Zurück zum Zitat Doroushi, A., Eslami, M. R., & Komeili, A. (2011). Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. Journal of Intelligent Material Systems and Structures, 22(3), 231–243.CrossRef Doroushi, A., Eslami, M. R., & Komeili, A. (2011). Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. Journal of Intelligent Material Systems and Structures, 22(3), 231–243.CrossRef
63.
Zurück zum Zitat Liu, X., Wang, Q., Queck, S. T., Sun, C. T., & Liu, X. (2001). Analysis of piezoelectric coupled circular plate. Smart Materials and Structures, 10(2), 229–239.CrossRef Liu, X., Wang, Q., Queck, S. T., Sun, C. T., & Liu, X. (2001). Analysis of piezoelectric coupled circular plate. Smart Materials and Structures, 10(2), 229–239.CrossRef
64.
Zurück zum Zitat Parashar, S. K., Wagner, U. V., & Hagedorn, P. (2004). A modified Timoshenko beam theory for nonlinear shear-induced flexural vibrations of piezoelectric continua. Nonlinear Dynamics, 37(3), 181–205.MATHCrossRef Parashar, S. K., Wagner, U. V., & Hagedorn, P. (2004). A modified Timoshenko beam theory for nonlinear shear-induced flexural vibrations of piezoelectric continua. Nonlinear Dynamics, 37(3), 181–205.MATHCrossRef
65.
Zurück zum Zitat Lee, P. C. Y., & Lin, W. S. (1998). Piezoelectrically forced vibrations of rectangular SC-cut quartz plates. Journal of Applied Physics, 83(12), 7822–7833.CrossRef Lee, P. C. Y., & Lin, W. S. (1998). Piezoelectrically forced vibrations of rectangular SC-cut quartz plates. Journal of Applied Physics, 83(12), 7822–7833.CrossRef
66.
Zurück zum Zitat Liu, X., Wang, Q., & Queck, S. T. (2002). Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates. International Journal of Solids and Structures, 39(8), 2129–2151.MATHCrossRef Liu, X., Wang, Q., & Queck, S. T. (2002). Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates. International Journal of Solids and Structures, 39(8), 2129–2151.MATHCrossRef
67.
68.
Zurück zum Zitat Park, J. S., Kim, J. H., & Moon, S. H. (2004). Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers. Composite Structures, 63(2), 179–188.CrossRef Park, J. S., Kim, J. H., & Moon, S. H. (2004). Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers. Composite Structures, 63(2), 179–188.CrossRef
69.
Zurück zum Zitat Reddy, J. N. (2004). An introduction to nonlinear finite element analysis. Oxford: Oxford University Press.MATHCrossRef Reddy, J. N. (2004). An introduction to nonlinear finite element analysis. Oxford: Oxford University Press.MATHCrossRef
70.
Zurück zum Zitat Komijani, M., Kiani, Y., & Eslami, M. R. (2012). Nonlinear thermoelectrical stability analysis of functionally graded piezoelectric material beams. Journal of Intelligent Material Systems and Structures, 29(9), 399–410. Komijani, M., Kiani, Y., & Eslami, M. R. (2012). Nonlinear thermoelectrical stability analysis of functionally graded piezoelectric material beams. Journal of Intelligent Material Systems and Structures, 29(9), 399–410.
71.
Zurück zum Zitat Li, S. R., Cheng, C. J., & Zhou, Y. H. (2003). Thermal post-buckling of an elastic beams subjected to a transversely non-uniform temperature rising. Applied Mathematics and Mechanics, English Edition, 24(5), 514–520.MATHCrossRef Li, S. R., Cheng, C. J., & Zhou, Y. H. (2003). Thermal post-buckling of an elastic beams subjected to a transversely non-uniform temperature rising. Applied Mathematics and Mechanics, English Edition, 24(5), 514–520.MATHCrossRef
72.
Zurück zum Zitat Li, S. R., Teng, Z. C., & Zhou, Y. H. (2004). Free vibration of heated, Euler-Bernoulli beams with thermal post-buckling deformations, Journal of Thermal Stresses, 27(9), 843–856.CrossRef Li, S. R., Teng, Z. C., & Zhou, Y. H. (2004). Free vibration of heated, Euler-Bernoulli beams with thermal post-buckling deformations, Journal of Thermal Stresses, 27(9), 843–856.CrossRef
73.
Zurück zum Zitat Song, X., & Li, S. R. (2007). Thermal buckling and post-buckling of pinned-fixed Euler-Bernoulli beams on an elastic foundation. Mechanics Research Communications, 34(2), 164–171.MATHCrossRef Song, X., & Li, S. R. (2007). Thermal buckling and post-buckling of pinned-fixed Euler-Bernoulli beams on an elastic foundation. Mechanics Research Communications, 34(2), 164–171.MATHCrossRef
74.
Zurück zum Zitat Li, S. R., & Batra, R. C. (2007). Thermal buckling and postbuckling of Euler Bernoulli beams supported on nonlinear elastic foundations. AIAA Journal, 45(3), 712–720.CrossRef Li, S. R., & Batra, R. C. (2007). Thermal buckling and postbuckling of Euler Bernoulli beams supported on nonlinear elastic foundations. AIAA Journal, 45(3), 712–720.CrossRef
75.
Zurück zum Zitat Sahraee, S., & Saidi, A. R. (2008). Free vibration and buckling analysis of functionally graded deep beam-columns on two-parameter elastic foundations using the differential quadrature method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(6), 1273–1284. Sahraee, S., & Saidi, A. R. (2008). Free vibration and buckling analysis of functionally graded deep beam-columns on two-parameter elastic foundations using the differential quadrature method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(6), 1273–1284.
76.
Zurück zum Zitat Fallah, A., & Aghdam, M. M. (2012). Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3), 1523–1530.CrossRef Fallah, A., & Aghdam, M. M. (2012). Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3), 1523–1530.CrossRef
77.
Zurück zum Zitat Fallah, A., & Aghdam, M. M. (2011). Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. European Journal of Mechanics A/Solids, 30(4), 571–583.MATHCrossRef Fallah, A., & Aghdam, M. M. (2011). Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. European Journal of Mechanics A/Solids, 30(4), 571–583.MATHCrossRef
78.
Zurück zum Zitat Hetenyi, M. (1948). Beams on elastic foundation. Ann Arbor, MI: University of Michigan Press.MATH Hetenyi, M. (1948). Beams on elastic foundation. Ann Arbor, MI: University of Michigan Press.MATH
79.
Zurück zum Zitat Emam, S. A., & Nayfeh, A. H. (2009). Postbuckling and free vibrations of composite beams. Composites Part B: Engineering, 88(4), 636–642. Emam, S. A., & Nayfeh, A. H. (2009). Postbuckling and free vibrations of composite beams. Composites Part B: Engineering, 88(4), 636–642.
80.
81.
Zurück zum Zitat Vosoughi A. R., Malekzadeh P., Banan Ma. R., Banan Mo. R. (2012). Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties. International Journal of nonlinear Mechanics, 47(3), 96–102. Vosoughi A. R., Malekzadeh P., Banan Ma. R., Banan Mo. R. (2012). Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties. International Journal of nonlinear Mechanics, 47(3), 96–102.
82.
Zurück zum Zitat Liew, K. M., Yang, J., & Kitipornchai, S. (2004). Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties. Journal of Applied Mechanics, 71(6), 839–850.MATHCrossRef Liew, K. M., Yang, J., & Kitipornchai, S. (2004). Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties. Journal of Applied Mechanics, 71(6), 839–850.MATHCrossRef
83.
Zurück zum Zitat Shen, H. S. (2007). Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties. Mechanics of Advanced Materials and Structures, 14(6), 439–452.CrossRef Shen, H. S. (2007). Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties. Mechanics of Advanced Materials and Structures, 14(6), 439–452.CrossRef
84.
Zurück zum Zitat Bellman, R. E., Kashef, B. G., & Casti, J. (1972). Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. Journal of Computational Physics, 10(1), 40–52.MATHMathSciNetCrossRef Bellman, R. E., Kashef, B. G., & Casti, J. (1972). Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. Journal of Computational Physics, 10(1), 40–52.MATHMathSciNetCrossRef
85.
Zurück zum Zitat Quan, J. R., & Chang, C. T. (1989). New insights in solving distributed system equations by the quadrature methods. Computers in Chemical Engineering, 13(9), 779–788.CrossRef Quan, J. R., & Chang, C. T. (1989). New insights in solving distributed system equations by the quadrature methods. Computers in Chemical Engineering, 13(9), 779–788.CrossRef
86.
Zurück zum Zitat Wu, T. Y., & Liu, G. R. (1999). A differential quadrature as a numerical method to solve differential equations. Computational Mechanics, 24(3), 197–205.MATHMathSciNetCrossRef Wu, T. Y., & Liu, G. R. (1999). A differential quadrature as a numerical method to solve differential equations. Computational Mechanics, 24(3), 197–205.MATHMathSciNetCrossRef
87.
Zurück zum Zitat Shu, C. (2000). Differential quadrature and its application in engineering. London Limited: Springer.MATHCrossRef Shu, C. (2000). Differential quadrature and its application in engineering. London Limited: Springer.MATHCrossRef
88.
Zurück zum Zitat Ghiasian, S. E., Kiani, Y., & Eslami, Y. (2013). Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation. Composite Structures, 106, 225–234.CrossRef Ghiasian, S. E., Kiani, Y., & Eslami, Y. (2013). Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation. Composite Structures, 106, 225–234.CrossRef
89.
Zurück zum Zitat Simitses, G. J. (1987). Instability of dynamically loaded structures. Applied Mechanics Review, 40(10), 1403–1408.CrossRef Simitses, G. J. (1987). Instability of dynamically loaded structures. Applied Mechanics Review, 40(10), 1403–1408.CrossRef
90.
Zurück zum Zitat Simitses, G. J. (1990). Dynamic stability of suddenly loaded structures. New-York: Springer.MATHCrossRef Simitses, G. J. (1990). Dynamic stability of suddenly loaded structures. New-York: Springer.MATHCrossRef
91.
Zurück zum Zitat Budiansky B., & Roth R. S. Axisymmetric dynamic buckling of clamped shallow spherical shells. Thecnical Note NASA, TN D-1510. Budiansky B., & Roth R. S. Axisymmetric dynamic buckling of clamped shallow spherical shells. Thecnical Note NASA, TN D-1510.
92.
Zurück zum Zitat Hutchinson, J. W., & Budiansky, B. (1966). Dynamic buckling estimates. AIAA Journal, 4(3), 525–530.CrossRef Hutchinson, J. W., & Budiansky, B. (1966). Dynamic buckling estimates. AIAA Journal, 4(3), 525–530.CrossRef
93.
Zurück zum Zitat Hsu, C. S. (1967). The effect of various parameters on the dynamic stability of a shallow arch. Journal of Applied Mechanics, 34(2), 349–358.CrossRef Hsu, C. S. (1967). The effect of various parameters on the dynamic stability of a shallow arch. Journal of Applied Mechanics, 34(2), 349–358.CrossRef
94.
Zurück zum Zitat Simitses, J. G. (1967). Axiymmetric dynamic snap-through buckling of shallow spherical caps. AIAA Journal, 5(5), 1019–1021.CrossRef Simitses, J. G. (1967). Axiymmetric dynamic snap-through buckling of shallow spherical caps. AIAA Journal, 5(5), 1019–1021.CrossRef
95.
Zurück zum Zitat Volmir S.A. (1972).Nonlinear dynamics of plates and shells. Moscow Science. Volmir S.A. (1972).Nonlinear dynamics of plates and shells. Moscow Science.
96.
Zurück zum Zitat Kleiber, M., Kotula, W., & Saran, M. (1987). Numerical analysis of dynamic quasi-bifurcation. Engineering Computations, 4(1), 48–52.CrossRef Kleiber, M., Kotula, W., & Saran, M. (1987). Numerical analysis of dynamic quasi-bifurcation. Engineering Computations, 4(1), 48–52.CrossRef
97.
Zurück zum Zitat Kubiak, T. (2007). Criteria of dynamic buckling estimation of thin-walled structures. Thin-Walled Structures, 45(10–11), 888–892.CrossRef Kubiak, T. (2007). Criteria of dynamic buckling estimation of thin-walled structures. Thin-Walled Structures, 45(10–11), 888–892.CrossRef
98.
Zurück zum Zitat Kounadis, A. N., Gantes, C., & Simitses, G. J. (1997). Nonlinear dynamic buckling of multi D.O.F structural dissipative system under impact loading. International Journal of Impact Engineering, 19(1), 63–80.CrossRef Kounadis, A. N., Gantes, C., & Simitses, G. J. (1997). Nonlinear dynamic buckling of multi D.O.F structural dissipative system under impact loading. International Journal of Impact Engineering, 19(1), 63–80.CrossRef
99.
Zurück zum Zitat Shariyat, M. (2008). Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. International Journal of Mechanical Sciences, 50(12), 1561–1571.CrossRef Shariyat, M. (2008). Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. International Journal of Mechanical Sciences, 50(12), 1561–1571.CrossRef
100.
Zurück zum Zitat Shariyat, M. (2008). Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. International Journal of Solids and Structures, 45(9), 2598–2612.MATHCrossRef Shariyat, M. (2008). Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. International Journal of Solids and Structures, 45(9), 2598–2612.MATHCrossRef
101.
Zurück zum Zitat Mirzavand, B., Eslami, M. R., & Shakrei, M. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.CrossRef Mirzavand, B., Eslami, M. R., & Shakrei, M. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.CrossRef
102.
Zurück zum Zitat Mirzavand, B., Eslami, M. R., & Reddy, J. N. (2013). Dynamic thermal postbuckling analysis of shear deformable piezoelectric-FGM cylindrical shells. Journal of Thermal Stresses, 36(3), 189–206.CrossRef Mirzavand, B., Eslami, M. R., & Reddy, J. N. (2013). Dynamic thermal postbuckling analysis of shear deformable piezoelectric-FGM cylindrical shells. Journal of Thermal Stresses, 36(3), 189–206.CrossRef
103.
Zurück zum Zitat Shariyat, M., & Eslami, M. R. (2000). On thermal dynamic buckling analysis of imperfect laminated cylindrical shells. ZAMM, 80(3), 171–182.MATHMathSciNetCrossRef Shariyat, M., & Eslami, M. R. (2000). On thermal dynamic buckling analysis of imperfect laminated cylindrical shells. ZAMM, 80(3), 171–182.MATHMathSciNetCrossRef
104.
Zurück zum Zitat Shariyat, M., & Eslami, M. R. (2002). Dynamic buckling and post-buckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads. Journal of Applied Mechanics, 66(2), 476–484.CrossRef Shariyat, M., & Eslami, M. R. (2002). Dynamic buckling and post-buckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads. Journal of Applied Mechanics, 66(2), 476–484.CrossRef
105.
Zurück zum Zitat Shuka, K. K., & Nath, Y. (2002). Buckling of laminated composite rectangular plates under transient thermal loading. Journal of Applied Mechanics, 69(5), 684–692.MATHCrossRef Shuka, K. K., & Nath, Y. (2002). Buckling of laminated composite rectangular plates under transient thermal loading. Journal of Applied Mechanics, 69(5), 684–692.MATHCrossRef
106.
Zurück zum Zitat Shariyat, M. (2009). Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Composite Structures, 88(2), 240–252.CrossRef Shariyat, M. (2009). Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Composite Structures, 88(2), 240–252.CrossRef
107.
Zurück zum Zitat Prakash, T., Singha, M. K., & Ganapathi, M. (2007). Nonlinear dynamic thermal buckling of functionally graded spherical caps. AIAA Journal, 45(2), 505–508.CrossRef Prakash, T., Singha, M. K., & Ganapathi, M. (2007). Nonlinear dynamic thermal buckling of functionally graded spherical caps. AIAA Journal, 45(2), 505–508.CrossRef
108.
Zurück zum Zitat Sundararajan, N., & Ganapathi, M. (2008). Dynamic thermal buckling of FG spherical caps. Journal of Engineering Mechanics, 134(2), 206–209.CrossRef Sundararajan, N., & Ganapathi, M. (2008). Dynamic thermal buckling of FG spherical caps. Journal of Engineering Mechanics, 134(2), 206–209.CrossRef
109.
Zurück zum Zitat Jabareen, M., & Sheinmann, I. (2007). Buckling and sensitivity to imperfection of conical shells under dynamic step-loading. Journal of Applied Mechanics, 74(6), 74–80.MATHCrossRef Jabareen, M., & Sheinmann, I. (2007). Buckling and sensitivity to imperfection of conical shells under dynamic step-loading. Journal of Applied Mechanics, 74(6), 74–80.MATHCrossRef
Metadaten
Titel
Buckling and Post-buckling of Beams
verfasst von
M. Reza Eslami
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62368-9_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.