Skip to main content

2020 | OriginalPaper | Buchkapitel

Burning Two Worlds

Algorithms for Burning Dense and Tree-Like Graphs

verfasst von : Shahin Kamali, Avery Miller, Kenny Zhang

Erschienen in: SOFSEM 2020: Theory and Practice of Computer Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph burning is a model for the spread of social influence in networks. The objective is to measure how quickly a fire (e.g., a piece of fake news) can be spread in a network. The burning process takes place in discrete rounds. In each round, a new fire breaks out at a selected vertex and burns it. Meanwhile, the old fires extend to their adjacent vertices and burn them. A burning schedule selects where the new fire breaks out in each round, and the burning problem asks for a schedule that burns all vertices in a minimum number of rounds, termed the burning number of the graph. The burning problem is known to be NP-hard even when the graph is a tree or a disjoint set of paths. For connected graphs, it has been conjectured [3] that burning takes at most \(\lceil \sqrt{n} \ \rceil \) rounds.
In this paper, we approach the algorithmic study of graph burning from two directions. First, we consider connected n-vertex graphs with minimum degree \(\delta \). We present an algorithm that burns any such graph in at most \(\sqrt{\frac{24n}{\delta +1}}\) rounds. In particular, for graphs with \(\delta \in \varTheta (n)\), all vertices are burned in a constant number of rounds. More interestingly, even when \(\delta \) is a constant that is independent of n, our algorithm answers the graph-burning conjecture in the affirmative by burning the graph in at most \(\lceil \sqrt{n} \rceil \) rounds. Then, we consider burning connected graphs with bounded pathlength or treelength. This includes many graph families, e.g., interval graphs (pathlength 1) and chordal graphs (treelength 1). We show that any connected graph with pathlength pl and diameter d can be burned in \(\lceil \sqrt{d-1} \rceil + pl\) rounds. Our algorithm ensures an approximation ratio of \(1+o(1)\) for graphs of bounded pathlength. We also give an algorithm that achieves an approximation ratio of \(2+o(1)\) for burning connected graphs of bounded treelength. Our approximation factors are better than the best known approximation factor of 3 for burning general graphs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discrete Appl. Math. 232, 73–87 (2017)MathSciNetCrossRef Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discrete Appl. Math. 232, 73–87 (2017)MathSciNetCrossRef
2.
Zurück zum Zitat Bonato, A., Gunderson, K., Shaw, A.: Burning the plane: densities of the infinite cartesian grid. Preprint (2018) Bonato, A., Gunderson, K., Shaw, A.: Burning the plane: densities of the infinite cartesian grid. Preprint (2018)
3.
Zurück zum Zitat Bonato, A., Janssen, J.C.M., Roshanbin, E.: Burning a graph as a model of social contagion. In: Workshop of Workshop on Algorithms and Models for the Web Graph, pp. 13–22 (2014) Bonato, A., Janssen, J.C.M., Roshanbin, E.: Burning a graph as a model of social contagion. In: Workshop of Workshop on Algorithms and Models for the Web Graph, pp. 13–22 (2014)
4.
5.
Zurück zum Zitat Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Theory and Applications of Models of Computation Conference (TAMC), pp. 74–92 (2019) Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Theory and Applications of Models of Computation Conference (TAMC), pp. 74–92 (2019)
6.
Zurück zum Zitat Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. ArXiv e-prints, July 2017 Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. ArXiv e-prints, July 2017
7.
Zurück zum Zitat Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298 (2012)CrossRef Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298 (2012)CrossRef
8.
Zurück zum Zitat Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRef Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRef
10.
Zurück zum Zitat Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007)MathSciNetCrossRef Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007)MathSciNetCrossRef
11.
Zurück zum Zitat Fajardo, D., Gardner, L.M.: Inferring contagion patterns in social contact networks with limited infection data. Netw. Spat. Econ. 13(4), 399–426 (2013)MathSciNetCrossRef Fajardo, D., Gardner, L.M.: Inferring contagion patterns in social contact networks with limited infection data. Netw. Spat. Econ. 13(4), 399–426 (2013)MathSciNetCrossRef
12.
Zurück zum Zitat Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)MathSciNetCrossRef Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)MathSciNetCrossRef
13.
Zurück zum Zitat Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)MathSciNetCrossRef Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)MathSciNetCrossRef
16.
Zurück zum Zitat Kramer, A.D.I.: The spread of emotion via facebook. In: CHI Conference on Human Factors in Computing Systems, (CHI), pp. 767–770 (2012) Kramer, A.D.I.: The spread of emotion via facebook. In: CHI Conference on Human Factors in Computing Systems, (CHI), pp. 767–770 (2012)
17.
Zurück zum Zitat Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. In: Proceedings of the National Academy of Sciences, pp. 8788–8790 (2014)CrossRef Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. In: Proceedings of the National Academy of Sciences, pp. 8788–8790 (2014)CrossRef
18.
Zurück zum Zitat Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Proceedings of Workshop on Algorithms and Models for the Web Graph, pp. 1–8 (2016) Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Proceedings of Workshop on Algorithms and Models for the Web Graph, pp. 1–8 (2016)
19.
Zurück zum Zitat Leitert, A.: Tree-Breadth of Graphs with Variants and Applications. Ph.D. thesis, Kent State University, College of Arts and Sciences, Department of Computer Science (2017) Leitert, A.: Tree-Breadth of Graphs with Variants and Applications. Ph.D. thesis, Kent State University, College of Arts and Sciences, Department of Computer Science (2017)
20.
21.
Zurück zum Zitat Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010). third Workshop on GraphClasses, Optimization, and Width Parameters Eugene, Oregon, USA, October 2007MathSciNetCrossRef Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010). third Workshop on GraphClasses, Optimization, and Width Parameters Eugene, Oregon, USA, October 2007MathSciNetCrossRef
22.
Zurück zum Zitat Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective. Graphs and Combinatorics 33(2), 449–471 (2017) MathSciNetCrossRef Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective. Graphs and Combinatorics 33(2), 449–471 (2017) MathSciNetCrossRef
23.
Zurück zum Zitat Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. Theor. Comput. Sci. 746, 124–135 (2018)MathSciNetCrossRef Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. Theor. Comput. Sci. 746, 124–135 (2018)MathSciNetCrossRef
24.
Zurück zum Zitat Robertson, N., Seymour, P.D.: Graph minors iii planar tree-width. J. Comb. Theory Ser. B 36(1), 49–64 (1984)MathSciNetCrossRef Robertson, N., Seymour, P.D.: Graph minors iii planar tree-width. J. Comb. Theory Ser. B 36(1), 49–64 (1984)MathSciNetCrossRef
25.
Zurück zum Zitat Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)MathSciNetCrossRef Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)MathSciNetCrossRef
26.
Zurück zum Zitat Sim, K.A., Tan, T.S., Wong, K.B.: On the burning number of generalized Petersen graphs. Bull. Malays. Math. Sci. Soc. 6, 1–14 (2017) Sim, K.A., Tan, T.S., Wong, K.B.: On the burning number of generalized Petersen graphs. Bull. Malays. Math. Sci. Soc. 6, 1–14 (2017)
Metadaten
Titel
Burning Two Worlds
verfasst von
Shahin Kamali
Avery Miller
Kenny Zhang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-38919-2_10