Skip to main content

2013 | OriginalPaper | Buchkapitel

9. Calibration Methods

verfasst von : Prof. Stéphane Crépey

Erschienen in: Financial Modeling

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Prices of liquid financial instruments are given by the market and are determined by supply-and-demand. Calibrating a model means finding numerical values of its parameters such that the prices of market instruments computed within the model, at a given time, coincide with their market prices. Liquid market prices are thus actually used by models in the “reverse-engineering” mode that consists in calibrating a model to market prices. Once calibrated to the market, a model can be used for Greeking and/or for pricing more exotic claims (Greeking means computing risk sensitivities in order to set-up a related hedge).
Calibration thus corresponds to estimation of a model. However, in finance the term “estimation” specifically refers to statistical estimation, i.e. estimation based on historical data by maximum likelihood or any other statistical procedure. Statistical estimation is thus backward looking, whereas calibration is forward looking, since derivative prices at the current time are based on the views of the market regarding the future dynamics of the underlyings. It is generally acknowledged that, whenever option data are available, it is better to use them to calibrate the model than to estimate a model statistically on past data.
The simplest example of a calibration problem is encountered in Chap. 5, where we discuss the notions of the implied volatility of an option and the implied correlation of a CDO tranche. In these cases the calibration problem is easy since there is only one parameter to “calibrate” to only one market quote. But can this really be called calibration? Well, it depends on what one wants to do. The exercise for the bank is, given a product it’s interested in, to identify a number of risk factors, select a number of hedging instruments also responsive to these, and to devise a model consistent for everybody (derivative and its hedging assets, which in some cases can be derivatives themselves) such that the risk of the position can be monitored in this model. But wait! Where has the real world gone? The model only exists in our heads until it is calibrated to the market. The least requirement is that the current price of the derivative and its hedging assets in the model are consistent with the ones observed today in the market. For instance, if it is only about hedging a vanilla option with the underlying stock, calibration in the sense of fitting a Black–Scholes implied volatility to that option’s price may be enough. If there are other derivatives among the hedging assets, then it’s not only a matter of calibration to one price, but of co-calibration of the whole set of instruments in use. Moreover (co-)calibration at a given time is only a first step, which can always be achieved in simple models such as local volatility models. These tell us that the volatility of a stock S is random (which it is), but only as a function of S. This would mean that options can be perfectly hedged by their underlying. Do you really believe in this? You shouldn’t, since it would simply contradict the existence of derivative markets (which would be useless if derivatives could be synthetized in terms of their underlyings). What we are missing here is the dynamics, namely we need a (co-)calibratable model with, in addition, the right dynamics, or the right Greeks. Now there is a “meta-theorem” in financial modeling stating that right Greeks are stable Greeks, namely Greeks which are stable when the model is recalibrated to the market every day. Which is a matter of calibration again, but across time (stability of the recalibrated parameters). So: calibration, co-calibration and re-calibration, the master equation of financial modeling!

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Not to be confused with Danzig’s simplex linear programming algorithm.
 
2
See Sect. 5.​4.​1.​1.
 
3
Up to the constant ln(m).
 
4
Risk-neutral variance for simplicity.
 
Literatur
9.
Zurück zum Zitat Avellaneda, M. (1999). Minimum-relative entropy calibration of asset-pricing models. International Journal of Theoretical and Applied Finance, 1(4), 447–472. CrossRef Avellaneda, M. (1999). Minimum-relative entropy calibration of asset-pricing models. International Journal of Theoretical and Applied Finance, 1(4), 447–472. CrossRef
10.
Zurück zum Zitat Avellaneda, M., Bu, R., Friedman, C., Grandchamp, N., Kruk, L., & Newman, J. (2001). Weighted Monte Carlo: a new technique for calibrating asset-pricing models. International Journal of Theoretical and Applied Finance, 4(1), 91–119. MathSciNetMATHCrossRef Avellaneda, M., Bu, R., Friedman, C., Grandchamp, N., Kruk, L., & Newman, J. (2001). Weighted Monte Carlo: a new technique for calibrating asset-pricing models. International Journal of Theoretical and Applied Finance, 4(1), 91–119. MathSciNetMATHCrossRef
11.
Zurück zum Zitat Avellaneda, M., Friedman, C., Holmes, R., & Samperi, D. (1997). Calibrating volatility surfaces via relative-entropy minimization. Applied Mathematical Finance, 41, 37–64. CrossRef Avellaneda, M., Friedman, C., Holmes, R., & Samperi, D. (1997). Calibrating volatility surfaces via relative-entropy minimization. Applied Mathematical Finance, 41, 37–64. CrossRef
55.
Zurück zum Zitat Breeden, D., & Litzenberger, R. (1978). Prices of state-contingent claims implicit in options prices. Journal of Business, 51, 621–651. CrossRef Breeden, D., & Litzenberger, R. (1978). Prices of state-contingent claims implicit in options prices. Journal of Business, 51, 621–651. CrossRef
68.
Zurück zum Zitat Coleman, T., Li, Y., & Verma, A. (1999). Reconstructing the unknown volatility function. Journal of Computational Finance, 2(3), 77–102. Coleman, T., Li, Y., & Verma, A. (1999). Reconstructing the unknown volatility function. Journal of Computational Finance, 2(3), 77–102.
77.
Zurück zum Zitat Crépey, S. (2003). Calibration of the local volatility in a generalized Black–Scholes model using Tikhonov regularization. SIAM Journal on Mathematical Analysis, 34(5), 1183–1206. MathSciNetMATHCrossRef Crépey, S. (2003). Calibration of the local volatility in a generalized Black–Scholes model using Tikhonov regularization. SIAM Journal on Mathematical Analysis, 34(5), 1183–1206. MathSciNetMATHCrossRef
78.
Zurück zum Zitat Crépey, S. (2003). Calibration of the local volatility in a trinomial tree using Tikhonov regularization. Inverse Problems, 19, 91–127. MATHCrossRef Crépey, S. (2003). Calibration of the local volatility in a trinomial tree using Tikhonov regularization. Inverse Problems, 19, 91–127. MATHCrossRef
98.
Zurück zum Zitat Derman, E., & Kani, I. (1994). Riding on a smile. Risk, February 1994, 139–145. Derman, E., & Kani, I. (1994). Riding on a smile. Risk, February 1994, 139–145.
105.
Zurück zum Zitat Dupire, B. (1994). Pricing with a smile. Risk, January 1994, 18–20. Dupire, B. (1994). Pricing with a smile. Risk, January 1994, 18–20.
109.
Zurück zum Zitat Egger, H., & Engl, H. W. (2005). Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems, 21, 1027–1045. MathSciNetMATHCrossRef Egger, H., & Engl, H. W. (2005). Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems, 21, 1027–1045. MathSciNetMATHCrossRef
116.
Zurück zum Zitat Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer Academic. MATHCrossRef Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems. Dordrecht: Kluwer Academic. MATHCrossRef
117.
Zurück zum Zitat Engl, H. W., Kunisch, K., & Neubauer, A. (1989). Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems, 5(4), 523–540. MathSciNetMATHCrossRef Engl, H. W., Kunisch, K., & Neubauer, A. (1989). Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems, 5(4), 523–540. MathSciNetMATHCrossRef
131.
Zurück zum Zitat Gatheral, J. (2006). The volatility surface: a practitioner’s guide. Hoboken: Wiley. Gatheral, J. (2006). The volatility surface: a practitioner’s guide. Hoboken: Wiley.
151.
Zurück zum Zitat Itô, K. (1944). Stochastic integral. Proceedings of the Imperial Academy, 20, 519–524. MATHCrossRef Itô, K. (1944). Stochastic integral. Proceedings of the Imperial Academy, 20, 519–524. MATHCrossRef
173.
Zurück zum Zitat Lagnado, R., & Osher, S. (1997). A technique for calibrating derivative security pricing models: numerical solution of an inverse problem. Journal of Computational Finance, 1(1), 13–25. Lagnado, R., & Osher, S. (1997). A technique for calibrating derivative security pricing models: numerical solution of an inverse problem. Journal of Computational Finance, 1(1), 13–25.
192.
Zurück zum Zitat Lipton, A. (2002). The vol smile problem. Risk, February 2002, 61–65. Lipton, A. (2002). The vol smile problem. Risk, February 2002, 61–65.
225.
Zurück zum Zitat Phillips, D. (1962). A technique for the numerical solution of certain integral equations of the first kind. Journal of the Association for Computing Machinery, 9, 84–97. MathSciNetMATHCrossRef Phillips, D. (1962). A technique for the numerical solution of certain integral equations of the first kind. Journal of the Association for Computing Machinery, 9, 84–97. MathSciNetMATHCrossRef
237.
Zurück zum Zitat Rosen, D., & Sanders, D. (2009). Valuing CDOs of bespoke portfolios with implied multi-factor models. The Journal of Credit Risk, 5(3), 3–36. Rosen, D., & Sanders, D. (2009). Valuing CDOs of bespoke portfolios with implied multi-factor models. The Journal of Credit Risk, 5(3), 3–36.
240.
Zurück zum Zitat Samperi, D. (2002). Calibrating a diffusion pricing model with uncertain volatility: regularization and stability. Mathematical Finance, 12(1), 71–87. MathSciNetMATHCrossRef Samperi, D. (2002). Calibrating a diffusion pricing model with uncertain volatility: regularization and stability. Mathematical Finance, 12(1), 71–87. MathSciNetMATHCrossRef
249.
Zurück zum Zitat Tikhonov, A. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady, 4, 1035–1038. (English translation of Doklady Akademii Nauk SSSR, 151, 501–504.) Tikhonov, A. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady, 4, 1035–1038. (English translation of Doklady Akademii Nauk SSSR, 151, 501–504.)
Metadaten
Titel
Calibration Methods
verfasst von
Prof. Stéphane Crépey
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37113-4_9

Premium Partner