Skip to main content
Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics 1/2018

01.12.2018 | Original Article

Cancer drug target identification and node-level analysis of the network of MAPK pathways

verfasst von: V. K. MD Aksam, V. M. Chandrasekaran, Sundaramurthy Pandurangan

Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mitogen-activated protein kinase (MAPK) pathways extensively studied in cancer and governing intertwined biological process challenges to identify the efficient drug target strategy. Cross-talks among ERK1/2, ERK5, JNK, and p38 amplify signaling flow and lead to the construction of the network of MAPK pathways. A topological analysis reveals that the network exponentially fits the degree distributions and targeting hub proteins causes detrimental to the network. We aim to identify novel drug targets controlling pathological consequences in the signaling flow than killing the cell. Intra-pathway node inhibition causes less perturbation in the network. We set the strategy of considering low degree (< 5) and intra-pathway nodes free from the intertwined regulations as preliminary isolation. Furthermore, nodes with less functionally diverse and significantly contributing to the cancer are isolated using GO annotations. Elements in the network of the MAPK pathways catalogued and analyzed using protein types, subcellular localization, cancerous/non-cancerous nature, target/non-targeted status, and inter- and intra-pathway properties to illustrate their roles in the complex mechanism of cancer. Over a decade of kinases as promising drug targets for cancer, other signal transduction supporting proteins also found to be equally competent. However, kinases interact with various other proteins to gain the higher degree. Similarly, translocation proteins interact with their partners in diverse location to gain the degree and functionally vital. Inhibition of kinases and translocation proteins may draw unexpected side effects. Non-targeted nodes Mos, PAC1, MKP4, 4EBP1, LAD, M3/6, RNPK, and SRF identified as cancer drug targets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157CrossRef Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157CrossRef
Zurück zum Zitat Aksam VKMD, Chandrasekaran VM, Pandurangan S (2017) Hub nodes in the network of human mitogen-activated protein kinase (MAPK) pathways: characteristics and potential as drug targets. Inform Med Unlocked 9:173–180CrossRef Aksam VKMD, Chandrasekaran VM, Pandurangan S (2017) Hub nodes in the network of human mitogen-activated protein kinase (MAPK) pathways: characteristics and potential as drug targets. Inform Med Unlocked 9:173–180CrossRef
Zurück zum Zitat Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382CrossRef Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382CrossRef
Zurück zum Zitat Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci 97:11149–11152CrossRef Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci 97:11149–11152CrossRef
Zurück zum Zitat An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD (2014) NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database 2014:bau015CrossRef An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD (2014) NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database 2014:bau015CrossRef
Zurück zum Zitat Antal MA, Bode C, Csermely P (2009) Perturbation waves in proteins and protein networks: applications of percolation and game theories in signaling and drug design. Curr Protein Pept Sci 10:161–172CrossRef Antal MA, Bode C, Csermely P (2009) Perturbation waves in proteins and protein networks: applications of percolation and game theories in signaling and drug design. Curr Protein Pept Sci 10:161–172CrossRef
Zurück zum Zitat Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRef Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRef
Zurück zum Zitat Barabási A-L, Gulbahce N, Loscalzo J (2010) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:nrg2918 Barabási A-L, Gulbahce N, Loscalzo J (2010) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:nrg2918
Zurück zum Zitat Behar M, Dohlman HG, Elston TC (2007) Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proc Natl Acad Sci 104:16146–16151CrossRef Behar M, Dohlman HG, Elston TC (2007) Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proc Natl Acad Sci 104:16146–16151CrossRef
Zurück zum Zitat Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science (80-) 283:381–387CrossRef Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science (80-) 283:381–387CrossRef
Zurück zum Zitat Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365CrossRef Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365CrossRef
Zurück zum Zitat Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000 Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000
Zurück zum Zitat Bunnage ME, Gilbert AM, Jones LH, Hett EC (2015) Know your target, know your molecule. Nat Chem Biol 11:368–372CrossRef Bunnage ME, Gilbert AM, Jones LH, Hett EC (2015) Know your target, know your molecule. Nat Chem Biol 11:368–372CrossRef
Zurück zum Zitat Butt TR, Karathanasi SK (1995) Transcription factors as drug targets: opportunities for therapeutic selectivity. Gene Expr 4:319–336 Butt TR, Karathanasi SK (1995) Transcription factors as drug targets: opportunities for therapeutic selectivity. Gene Expr 4:319–336
Zurück zum Zitat Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83CrossRef Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83CrossRef
Zurück zum Zitat Chen Y-R, Shrivastava A, Tan T-H (2001) Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene 20:367CrossRef Chen Y-R, Shrivastava A, Tan T-H (2001) Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene 20:367CrossRef
Zurück zum Zitat Cohen P (2010) Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochem J 425:53–54CrossRef Cohen P (2010) Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochem J 425:53–54CrossRef
Zurück zum Zitat Cornelius SP, Kath WL, Motter AE (2011) Controlling complex networks with compensatory perturbations. arXiv Preprint arXiv:11053726 Cornelius SP, Kath WL, Motter AE (2011) Controlling complex networks with compensatory perturbations. arXiv Preprint arXiv:11053726
Zurück zum Zitat Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408CrossRef Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408CrossRef
Zurück zum Zitat Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749CrossRef Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749CrossRef
Zurück zum Zitat Dejgaard K, Leffers H, Rasmussen HH, Madsen P, Kruse TA, Gesser B et al (1994) Identification, molecular cloning, expression and chromosome mapping of a family of transformation upregulated hnRNP-K proteins derived by alternative splicing. J Mol Biol 236:33–48CrossRef Dejgaard K, Leffers H, Rasmussen HH, Madsen P, Kruse TA, Gesser B et al (1994) Identification, molecular cloning, expression and chromosome mapping of a family of transformation upregulated hnRNP-K proteins derived by alternative splicing. J Mol Biol 236:33–48CrossRef
Zurück zum Zitat Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290CrossRef Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290CrossRef
Zurück zum Zitat Dutkowski J, Kramer M, Surma MA, Balakrishnan R, Cherry JM, Krogan NJ et al (2013) A gene ontology inferred from molecular networks. Nat Biotechnol 31:38–45CrossRef Dutkowski J, Kramer M, Surma MA, Balakrishnan R, Cherry JM, Krogan NJ et al (2013) A gene ontology inferred from molecular networks. Nat Biotechnol 31:38–45CrossRef
Zurück zum Zitat English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23:40–45CrossRef English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23:40–45CrossRef
Zurück zum Zitat Erenpreisa J, Cragg MS (2010) MOS, aneuploidy and the ploidy cycle of cancer cells. Oncogene 29:5447–5451CrossRef Erenpreisa J, Cragg MS (2010) MOS, aneuploidy and the ploidy cycle of cancer cells. Oncogene 29:5447–5451CrossRef
Zurück zum Zitat Fliri AF, Loging WT, Volkmann RA (2010) Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555CrossRef Fliri AF, Loging WT, Volkmann RA (2010) Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555CrossRef
Zurück zum Zitat Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al (2014) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRef Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al (2014) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRef
Zurück zum Zitat Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107CrossRef Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107CrossRef
Zurück zum Zitat Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science (80-) 287:1969–1973CrossRef Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science (80-) 287:1969–1973CrossRef
Zurück zum Zitat Gong X, Wu R, Zhang Y, Zhao W, Cheng L, Gu Y et al (2010) Extracting consistent knowledge from highly inconsistent cancer gene data sources. BMC Bioinform 11:76CrossRef Gong X, Wu R, Zhang Y, Zhao W, Cheng L, Gu Y et al (2010) Extracting consistent knowledge from highly inconsistent cancer gene data sources. BMC Bioinform 11:76CrossRef
Zurück zum Zitat Gorgoulis VG, Zacharatos P, Mariatos G, Liloglou T, Kokotas S, Kastrinakis N et al (2001) Deregulated expression of c-mos in non-small cell lung carcinomas: relationship with p53 status, genomic instability, and tumor kinetics. Cancer Res 61:538–549 Gorgoulis VG, Zacharatos P, Mariatos G, Liloglou T, Kokotas S, Kastrinakis N et al (2001) Deregulated expression of c-mos in non-small cell lung carcinomas: relationship with p53 status, genomic instability, and tumor kinetics. Cancer Res 61:538–549
Zurück zum Zitat Gough NR (2011) Focus issue: recruiting players for a game of ERK. Sci Signal 4:9 Gough NR (2011) Focus issue: recruiting players for a game of ERK. Sci Signal 4:9
Zurück zum Zitat Grant SK (2009) Therapeutic protein kinase inhibitors. Cell Mol Life Sci 66:1163–1177CrossRef Grant SK (2009) Therapeutic protein kinase inhibitors. Cell Mol Life Sci 66:1163–1177CrossRef
Zurück zum Zitat Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC et al (2013) DGIdb: mining the druggable genome. Nat Methods 10:1209–1210CrossRef Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC et al (2013) DGIdb: mining the druggable genome. Nat Methods 10:1209–1210CrossRef
Zurück zum Zitat Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370CrossRef Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370CrossRef
Zurück zum Zitat He R, Yu Z, Zhang R, Zhang Z (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35:1227–1246CrossRef He R, Yu Z, Zhang R, Zhang Z (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35:1227–1246CrossRef
Zurück zum Zitat Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690CrossRef Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690CrossRef
Zurück zum Zitat Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354CrossRef Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354CrossRef
Zurück zum Zitat Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834CrossRef Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834CrossRef
Zurück zum Zitat Inoue A, Sawata SY, Taira K, Wadhwa R (2007) Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci 104:8983–8988CrossRef Inoue A, Sawata SY, Taira K, Wadhwa R (2007) Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci 104:8983–8988CrossRef
Zurück zum Zitat Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297CrossRef Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297CrossRef
Zurück zum Zitat Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132CrossRef Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132CrossRef
Zurück zum Zitat Karamouzis MV, Papavassiliou AG (2011) Transcription factor networks as targets for therapeutic intervention of cancer: the breast cancer paradigm. Mol Med 17:1133CrossRef Karamouzis MV, Papavassiliou AG (2011) Transcription factor networks as targets for therapeutic intervention of cancer: the breast cancer paradigm. Mol Med 17:1133CrossRef
Zurück zum Zitat Kitano H (2004a) Opinion: cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227CrossRef Kitano H (2004a) Opinion: cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227CrossRef
Zurück zum Zitat Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202CrossRef Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202CrossRef
Zurück zum Zitat Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041CrossRef Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041CrossRef
Zurück zum Zitat Korcsmáros T, Farkas IJ, Szalay MS, Rovó P, Fazekas D, Spiró Z et al (2010) Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26:2042–2050CrossRef Korcsmáros T, Farkas IJ, Szalay MS, Rovó P, Fazekas D, Spiró Z et al (2010) Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26:2042–2050CrossRef
Zurück zum Zitat Levitzki A, Klein S (2010) Signal transduction therapy of cancer. Mol Aspects Med 31:287–329CrossRef Levitzki A, Klein S (2010) Signal transduction therapy of cancer. Mol Aspects Med 31:287–329CrossRef
Zurück zum Zitat Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM et al (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354CrossRef Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM et al (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354CrossRef
Zurück zum Zitat Lewitzky M, Simister PC, Feller SM (2012) Beyond ‘furballs’ and ‘dumpling soups’—towards a molecular architecture of signaling complexes and networks. FEBS Lett 586:2740–2750CrossRef Lewitzky M, Simister PC, Feller SM (2012) Beyond ‘furballs’ and ‘dumpling soups’—towards a molecular architecture of signaling complexes and networks. FEBS Lett 586:2740–2750CrossRef
Zurück zum Zitat Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2:554–565CrossRef Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2:554–565CrossRef
Zurück zum Zitat McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 75:1249–1261CrossRef McConnell JL, Wadzinski BE (2009) Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 75:1249–1261CrossRef
Zurück zum Zitat Mees C, Nemunaitis J, Senzer N (2009) Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 16:103–112CrossRef Mees C, Nemunaitis J, Senzer N (2009) Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 16:103–112CrossRef
Zurück zum Zitat Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C et al (1997) Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 272:5141–5151CrossRef Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C et al (1997) Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 272:5141–5151CrossRef
Zurück zum Zitat Nakamura K, Johnson GL (2003) PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 278:36989–36992CrossRef Nakamura K, Johnson GL (2003) PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 278:36989–36992CrossRef
Zurück zum Zitat Nguyen LK, Matallanas D, Croucher DR, von Kriegsheim A, Kholodenko BN (2013) Signalling by protein phosphatases and drug development: a systems-centred view. FEBS J 280:751–765CrossRef Nguyen LK, Matallanas D, Croucher DR, von Kriegsheim A, Kholodenko BN (2013) Signalling by protein phosphatases and drug development: a systems-centred view. FEBS J 280:751–765CrossRef
Zurück zum Zitat Patterson KI, Brummer T, O’brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489CrossRef Patterson KI, Brummer T, O’brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489CrossRef
Zurück zum Zitat Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science (80-) 278:2075–2080CrossRef Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science (80-) 278:2075–2080CrossRef
Zurück zum Zitat Pearson MA, Fabbro D (2004) Targeting protein kinases in cancer therapy: a success? Expert Rev Anticancer Ther 4:1113–1124CrossRef Pearson MA, Fabbro D (2004) Targeting protein kinases in cancer therapy: a success? Expert Rev Anticancer Ther 4:1113–1124CrossRef
Zurück zum Zitat Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta (BBA) Mol Cell Res 1813:1619–1633CrossRef Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta (BBA) Mol Cell Res 1813:1619–1633CrossRef
Zurück zum Zitat Prasad CK, Mahadevan M, MacNicol MC, MacNicol AM (2008) Mos 3′ UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Mol Reprod Dev 75:1258–1268CrossRef Prasad CK, Mahadevan M, MacNicol MC, MacNicol AM (2008) Mos 3′ UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Mol Reprod Dev 75:1258–1268CrossRef
Zurück zum Zitat Qin C, Zhang C, Zhu F, Xu F, Chen SY, Zhang P et al (2013) Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 42:D1118–D1123CrossRef Qin C, Zhang C, Zhu F, Xu F, Chen SY, Zhang P et al (2013) Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 42:D1118–D1123CrossRef
Zurück zum Zitat Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590CrossRef Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590CrossRef
Zurück zum Zitat Roberts PJ, Der CJ (2007) Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310CrossRef Roberts PJ, Der CJ (2007) Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310CrossRef
Zurück zum Zitat Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H, Siebenlist U et al (1993) PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259:1763 (YORK THEN WASHINGTON-) CrossRef Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H, Siebenlist U et al (1993) PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259:1763 (YORK THEN WASHINGTON-) CrossRef
Zurück zum Zitat Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947CrossRef Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947CrossRef
Zurück zum Zitat Simpson JC, Pepperkok R (2006) The subcellular localization of the mammalian proteome comes a fraction closer. Genome Biol 7:222CrossRef Simpson JC, Pepperkok R (2006) The subcellular localization of the mammalian proteome comes a fraction closer. Genome Biol 7:222CrossRef
Zurück zum Zitat Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P et al (1999) cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18:6063CrossRef Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P et al (1999) cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18:6063CrossRef
Zurück zum Zitat Tsukiyama-Kohara K, Vidal SM, Gingras A-C, Glover TW, Hanash SM, Heng H et al (1996) Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2. Genomics 38:353–363CrossRef Tsukiyama-Kohara K, Vidal SM, Gingras A-C, Glover TW, Hanash SM, Heng H et al (1996) Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2. Genomics 38:353–363CrossRef
Zurück zum Zitat Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549CrossRef Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549CrossRef
Zurück zum Zitat Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K (1994) Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367:651–654CrossRef Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K (1994) Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367:651–654CrossRef
Zurück zum Zitat Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417CrossRef Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417CrossRef
Zurück zum Zitat Wiley HS (2014) Open questions: the disrupted circuitry of the cancer cell. BMC Biol 12:88CrossRef Wiley HS (2014) Open questions: the disrupted circuitry of the cancer cell. BMC Biol 12:88CrossRef
Zurück zum Zitat Yao Z, Seger R (2009) The ERK signaling cascade—views from different subcellular compartments. Biofactors 35:407–416CrossRef Yao Z, Seger R (2009) The ERK signaling cascade—views from different subcellular compartments. Biofactors 35:407–416CrossRef
Zurück zum Zitat Yee D (2010) Adaptor proteins as targets for cancer prevention. Cancer Prev Res 3:263–265CrossRef Yee D (2010) Adaptor proteins as targets for cancer prevention. Cancer Prev Res 3:263–265CrossRef
Zurück zum Zitat Yong H-Y, Koh M-S, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18:1893–1905CrossRef Yong H-Y, Koh M-S, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18:1893–1905CrossRef
Zurück zum Zitat Yu Q, Huang J-F (2012) The analysis of the druggable families based on topological features in the protein–protein interaction network. Lett Drug Des Discov 9:426–430CrossRef Yu Q, Huang J-F (2012) The analysis of the druggable families based on topological features in the protein–protein interaction network. Lett Drug Des Discov 9:426–430CrossRef
Zurück zum Zitat Zehorai E, Yao Z, Plotnikov A, Seger R (2010) The subcellular localization of MEK and ERK—a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol 314:213–220CrossRef Zehorai E, Yao Z, Plotnikov A, Seger R (2010) The subcellular localization of MEK and ERK—a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol 314:213–220CrossRef
Zurück zum Zitat Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39CrossRef Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39CrossRef
Metadaten
Titel
Cancer drug target identification and node-level analysis of the network of MAPK pathways
verfasst von
V. K. MD Aksam
V. M. Chandrasekaran
Sundaramurthy Pandurangan
Publikationsdatum
01.12.2018
Verlag
Springer Vienna
Erschienen in
Network Modeling Analysis in Health Informatics and Bioinformatics / Ausgabe 1/2018
Print ISSN: 2192-6662
Elektronische ISSN: 2192-6670
DOI
https://doi.org/10.1007/s13721-018-0165-1

Weitere Artikel der Ausgabe 1/2018

Network Modeling Analysis in Health Informatics and Bioinformatics 1/2018 Zur Ausgabe