Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Capacitively-Coupled Chopper Operational Amplifiers

verfasst von : Qinwen Fan, Kofi A. A. Makinwa, Johan H. Huijsing

Erschienen in: Capacitively-Coupled Chopper Amplifiers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Chap. 3, the basic capacitively-coupled chopper topology for operational amplifiers (opamp) has been described. In this chapter, two capacitively-coupled chopper opamps (CCOPA) will be presented. They both achieve wide input common-mode voltage range (CMVR) and high precision. The first opamp employs a single-path architecture and features high power efficiency and simplicity. The second opamp is more complex and employs a multipath architecture. Thus, it is less power efficient, but has a wider bandwidth and a smoother transfer function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. H. Huijsing, Operational Amplifiers: Theory and Design. Spinger, 2010. J. H. Huijsing, Operational Amplifiers: Theory and Design. Spinger, 2010.
2.
Zurück zum Zitat R. Hogervorst, J.P. Tero, R.G.H. Eschauzier, J.H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VCSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505-1513, Dec. 1994. R. Hogervorst, J.P. Tero, R.G.H. Eschauzier, J.H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VCSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505-1513, Dec. 1994.
3.
Zurück zum Zitat R. Blauschild, “Differential amplifier circuit with rail-to-rail capability,” US Patent 4, 532, 479, 30 July 1985. R. Blauschild, “Differential amplifier circuit with rail-to-rail capability,” US Patent 4, 532, 479, 30 July 1985.
4.
Zurück zum Zitat W. Redman-White, “A high bandwidth constant gm and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low-voltage VLSI systems,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 701-712, May 1997. W. Redman-White, “A high bandwidth constant gm and slew-rate rail-to-rail CMOS input circuit and its application to analog cells for low-voltage VLSI systems,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 701-712, May 1997.
7.
Zurück zum Zitat A. Anil, R.K. Sharma, “A high efficiency charge pump for low voltage devices,” International Journal of VLSI design & Communication Systems (VLSICS), Vol.3, No.3, June 2012. A. Anil, R.K. Sharma, “A high efficiency charge pump for low voltage devices,” International Journal of VLSI design & Communication Systems (VLSICS), Vol.3, No.3, June 2012.
9.
Zurück zum Zitat F. Witte, K. Makinwa, and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, New York: Springer, 2009. F. Witte, K. Makinwa, and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, New York: Springer, 2009.
10.
Zurück zum Zitat T. Denison, K. Consoer, W. Santa, et al., “A 2 µW 100nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007. T. Denison, K. Consoer, W. Santa, et al., “A 2 µW 100nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
11.
Zurück zum Zitat R.Wu, K. A. A. Makinwa, and J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232-3243, Dec. 2009. R.Wu, K. A. A. Makinwa, and J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232-3243, Dec. 2009.
12.
Zurück zum Zitat M. Snoeij, M. Ivanov, “A 36V JFET-input bipolar operational amplifier with 1μV/°C maximum offset drift and –126dB total harmonic distortion,” ISSCC, Dig. Tech. Papers, pp. 248–249, Feb. 2011. M. Snoeij, M. Ivanov, “A 36V JFET-input bipolar operational amplifier with 1μV/°C maximum offset drift and –126dB total harmonic distortion,” ISSCC, Dig. Tech. Papers, pp. 248–249, Feb. 2011.
13.
Zurück zum Zitat R. Burt, J. Zhang, “Micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path,” JSSC, vol. 41, no. 12, pp. 2729-2736, Dec. 2006. R. Burt, J. Zhang, “Micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path,” JSSC, vol. 41, no. 12, pp. 2729-2736, Dec. 2006.
14.
Zurück zum Zitat Y. Kusuda, “A 5.9nV/√Hz Chopper Operational Amplifier with 0.78μV Maximum Offset and 28.3nV/°C Offset Drift,” ISSCC, Dig. Tech. Papers, pp. 242–243, Feb. 2011. Y. Kusuda, “A 5.9nV/√Hz Chopper Operational Amplifier with 0.78μV Maximum Offset and 28.3nV/°C Offset Drift,” ISSCC, Dig. Tech. Papers, pp. 242–243, Feb. 2011.
15.
Zurück zum Zitat Q. Fan, J. H. Huijsing, K. A. A. Makinwa, “A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2μV offset,” JSSC, vol. 47, no. 2, pp. 464-475, Feb. 2012. Q. Fan, J. H. Huijsing, K. A. A. Makinwa, “A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2μV offset,” JSSC, vol. 47, no. 2, pp. 464-475, Feb. 2012.
16.
Zurück zum Zitat M. Belloni, Member, E. Bonizzoni, A. Fornasari, F. Maloberti, “A Micropower Chopper—CDS Operational Amplifier,” JSSC, vol. 45, no. 12, pp. 2521-2529, Dec. 2010. M. Belloni, Member, E. Bonizzoni, A. Fornasari, F. Maloberti, “A Micropower Chopper—CDS Operational Amplifier,” JSSC, vol. 45, no. 12, pp. 2521-2529, Dec. 2010.
17.
Zurück zum Zitat R. Eschauzier, L. Kerklaan, J. Huijsing, “A 100MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure,” IEEE JSSC, pp. 1709-1717, Dec. 1992. R. Eschauzier, L. Kerklaan, J. Huijsing, “A 100MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure,” IEEE JSSC, pp. 1709-1717, Dec. 1992.
18.
Zurück zum Zitat Q. Fan, J. H. Huijsing, K.A.A. Makinwa, “A Capacitively Coupled Chopper Instrumentation Amplifier With a ±30V Common-Mode Range 160dB CMRR and 5μV Offset,” ISSCC, Dig. Tech. Papers, pp. 242–243, Feb. 2011. Q. Fan, J. H. Huijsing, K.A.A. Makinwa, “A Capacitively Coupled Chopper Instrumentation Amplifier With a ±30V Common-Mode Range 160dB CMRR and 5μV Offset,” ISSCC, Dig. Tech. Papers, pp. 242–243, Feb. 2011.
Metadaten
Titel
Capacitively-Coupled Chopper Operational Amplifiers
verfasst von
Qinwen Fan
Kofi A. A. Makinwa
Johan H. Huijsing
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47391-8_5

Neuer Inhalt