Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. Carbon Nanotubes for Neuron–Electrode Interface with Improved Mechanical Performance

verfasst von : David Rand, Yael Hanein

Erschienen in: Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The capacity of neuronal cells to elicit and propagate action potentials in response to electrical stimulation is harnessed in neuro-prosthetic devices to restore impaired neuronal activity. Recording and stimulating electrodes are accordingly one of the major building blocks of these systems, and extensive investigations were directed to build better performing electrodes. The electrochemical properties of the electrodes have clearly gained a lot of attention in securing an electrode technology suitable for high signal-to-noise recordings as well as low-power and high-efficacy stimulation. In addition to electrochemical considerations, the design of the electrodes has to take into account multitude of other concerns ranging from surface chemistry, electrode stability, biocompatibility, mechanical properties, to manufacturability. It is now widely accepted that the neuron–electrode interface is considerably impacted by physical cues and that the mechanical properties of the electrode have to be carefully addressed to achieve optimal performances. Mechanical properties affect the manner neurons proliferate, adhere, and possibly operate. In this chapter, we will focus on the mechanical properties of the neuron–electrode interface. We begin by reviewing neuronal mechanics and its relevance to electrode design and performance. In particular, we will address surface properties such as roughness and shape as important properties in the realm of neuronal electrodes. The ultimate aim and focus of this chapter will be to introduce carbon nanotube electrodes as a powerful system for improved mechanical performances and to discuss their unique properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., Vaadia, E., and Bergman, H.: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism, Neuron 72, 370–384 (2011) Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S. N., Israel, Z., Vaadia, E., and Bergman, H.: Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism, Neuron 72, 370–384 (2011)
2.
Zurück zum Zitat Zrenner, E., Bartz-Schmidt, K. U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.-P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., et al.: Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings Biological Sciences/The Royal Society 278, 1489–1497 (2011) Zrenner, E., Bartz-Schmidt, K. U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.-P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., et al.: Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings Biological Sciences/The Royal Society 278, 1489–1497 (2011)
3.
Zurück zum Zitat Cogan, S. F.: Neural stimulation and recording electrodes. Annual Review of Biomedical Engineering 10, 275–309 (2008) Cogan, S. F.: Neural stimulation and recording electrodes. Annual Review of Biomedical Engineering 10, 275–309 (2008)
4.
Zurück zum Zitat Hai, A., Shappir, J., and Spira, M. E.: In-cell recordings by extracellular microelectrodes. Nature Methods 7, 200–202 (2010) Hai, A., Shappir, J., and Spira, M. E.: In-cell recordings by extracellular microelectrodes. Nature Methods 7, 200–202 (2010)
5.
Zurück zum Zitat Eshraghi, A. a, Gupta, C., Ozdamar, O., Balkany, T. J., Truy, E., and Nazarian, R.: Biomedical engineering principles of modern cochlear implants and recent surgical innovations. The Anatomical Record (Hoboken) 295, 1957–1966 (2012) Eshraghi, A. a, Gupta, C., Ozdamar, O., Balkany, T. J., Truy, E., and Nazarian, R.: Biomedical engineering principles of modern cochlear implants and recent surgical innovations. The Anatomical Record (Hoboken) 295, 1957–1966 (2012)
6.
Zurück zum Zitat Fernandes, R.A., Diniz, B., Ribeiro, R., and Humayun, M.: Artificial vision through neuronal stimulation. Neuroscience Letters 519, 122–128 (2012)CrossRef Fernandes, R.A., Diniz, B., Ribeiro, R., and Humayun, M.: Artificial vision through neuronal stimulation. Neuroscience Letters 519, 122–128 (2012)CrossRef
7.
Zurück zum Zitat Schwartz, A. B., Cui, X. T., Weber, D. J., and Moran, D. W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006)CrossRef Schwartz, A. B., Cui, X. T., Weber, D. J., and Moran, D. W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006)CrossRef
8.
Zurück zum Zitat Shahaf, G., and Marom, S.: Learning in networks of cortical neurons. The Journal of Neuroscience 21, 8782–8788 (2001) Shahaf, G., and Marom, S.: Learning in networks of cortical neurons. The Journal of Neuroscience 21, 8782–8788 (2001)
9.
Zurück zum Zitat O’Shaughnessy, T. J., Gray, S. A., and Pancrazio, J. J.: Cultured neuronal networks as environmental biosensors. Journal of Applied Toxicology 24, 379–385 (2004)CrossRef O’Shaughnessy, T. J., Gray, S. A., and Pancrazio, J. J.: Cultured neuronal networks as environmental biosensors. Journal of Applied Toxicology 24, 379–385 (2004)CrossRef
10.
Zurück zum Zitat Johnstone, A. F. M., Gross, G. W., Weiss, D. G., Schroeder, O. H.-U., Gramowski, A., and Shafer, T. J.: Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31, 331–350 (2010)CrossRef Johnstone, A. F. M., Gross, G. W., Weiss, D. G., Schroeder, O. H.-U., Gramowski, A., and Shafer, T. J.: Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31, 331–350 (2010)CrossRef
11.
Zurück zum Zitat Rajagopalan, J., Tofangchi, A., and Saif, M. T. A.: Drosophila neurons actively regulate axonal tension in vivo. Biophysical Journal 99, 3208–3215 (2010)CrossRef Rajagopalan, J., Tofangchi, A., and Saif, M. T. A.: Drosophila neurons actively regulate axonal tension in vivo. Biophysical Journal 99, 3208–3215 (2010)CrossRef
12.
Zurück zum Zitat Ayali, A.: The function of mechanical tension in neuronal and network development. Integrative Biology: Quantitative Biosciences from Nano to Macro 2, 178–182 (2010)CrossRef Ayali, A.: The function of mechanical tension in neuronal and network development. Integrative Biology: Quantitative Biosciences from Nano to Macro 2, 178–182 (2010)CrossRef
13.
Zurück zum Zitat Dowell-Mesfin, N. M., Abdul-Karim, M.-A., Turner, A. M. P., Schanz, S., Craighead, H. G., Roysam, B., Turner, J. N., and Shain, W.: Topographically modified surfaces affect orientation and growth of hippocampal neurons. Journal of Neural Engineering 1, 78–90 (2004)CrossRef Dowell-Mesfin, N. M., Abdul-Karim, M.-A., Turner, A. M. P., Schanz, S., Craighead, H. G., Roysam, B., Turner, J. N., and Shain, W.: Topographically modified surfaces affect orientation and growth of hippocampal neurons. Journal of Neural Engineering 1, 78–90 (2004)CrossRef
14.
Zurück zum Zitat Shalek, A. K., Robinson, J. T., Karp, E. S., Lee, J. S., Ahn, D.-R., Yoon, M.-H., Sutton, A., Jorgolli, M., Gertner, R. S., Gujral, T. S., et al.: Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences of the United States of America 107, 1870–1875 (2010)CrossRef Shalek, A. K., Robinson, J. T., Karp, E. S., Lee, J. S., Ahn, D.-R., Yoon, M.-H., Sutton, A., Jorgolli, M., Gertner, R. S., Gujral, T. S., et al.: Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences of the United States of America 107, 1870–1875 (2010)CrossRef
15.
Zurück zum Zitat Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., and Ballerini, L.: Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 27, 6931–6936 (2007)CrossRef Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., and Ballerini, L.: Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 27, 6931–6936 (2007)CrossRef
16.
Zurück zum Zitat Mammoto, T., and Ingber, D. E.: Mechanical control of tissue and organ development. Development (Cambridge, England) 137, 1407–1420 (2010) Mammoto, T., and Ingber, D. E.: Mechanical control of tissue and organ development. Development (Cambridge, England) 137, 1407–1420 (2010)
17.
Zurück zum Zitat Rajagopalan, J., and Saif, M. T. A.: MEMS sensors and microsystems for cell mechanobiology. Journal of Micromechanics and Microengineering: Structures, Devices, and Systems 21, 54002–54012 (2011)CrossRef Rajagopalan, J., and Saif, M. T. A.: MEMS sensors and microsystems for cell mechanobiology. Journal of Micromechanics and Microengineering: Structures, Devices, and Systems 21, 54002–54012 (2011)CrossRef
18.
Zurück zum Zitat Leong, W. S., Wu, S. C., Pal, M., Tay, C. Y., Yu, H., Li, H., and Tan, L. P.: Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. Journal of Tissue Engineering and Regenerative Medicine 6 Suppl 3, s68–79 (2012)CrossRef Leong, W. S., Wu, S. C., Pal, M., Tay, C. Y., Yu, H., Li, H., and Tan, L. P.: Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. Journal of Tissue Engineering and Regenerative Medicine 6 Suppl 3, s68–79 (2012)CrossRef
19.
Zurück zum Zitat Baranes, K., Kollmar, D., Chejanovsky, N., Sharoni, A., and Shefi, O.: Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions. Journal of Molecular Histology 43, 437–447 (2012)CrossRef Baranes, K., Kollmar, D., Chejanovsky, N., Sharoni, A., and Shefi, O.: Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions. Journal of Molecular Histology 43, 437–447 (2012)CrossRef
20.
Zurück zum Zitat Brunetti, V., Maiorano, G., Rizzello, L., Sorce, B., Sabella, S., Cingolani, R., and Pompa, P. P.: Neurons sense nanoscale roughness with nanometer sensitivity. Proceedings of the National Academy of Sciences of the United States of America 107, 6264–6269 (2010)CrossRef Brunetti, V., Maiorano, G., Rizzello, L., Sorce, B., Sabella, S., Cingolani, R., and Pompa, P. P.: Neurons sense nanoscale roughness with nanometer sensitivity. Proceedings of the National Academy of Sciences of the United States of America 107, 6264–6269 (2010)CrossRef
21.
Zurück zum Zitat Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., and Ayali, A.: The regulative role of neurite mechanical tension in network development. Biophysical Journal 96, 1661–1670 (2009)CrossRef Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., and Ayali, A.: The regulative role of neurite mechanical tension in network development. Biophysical Journal 96, 1661–1670 (2009)CrossRef
22.
Zurück zum Zitat Maher, M., Pine, J., Wright, J., and Tai, Y.-C.: The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. Journal of Neuroscience Methods 87, 45–56 (1999)CrossRef Maher, M., Pine, J., Wright, J., and Tai, Y.-C.: The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. Journal of Neuroscience Methods 87, 45–56 (1999)CrossRef
23.
Zurück zum Zitat Bray, D.: Mechanical tension produced by nerve cells in tissue culture. Journal of Cell Science 37, 391–410 (1979) Bray, D.: Mechanical tension produced by nerve cells in tissue culture. Journal of Cell Science 37, 391–410 (1979)
24.
Zurück zum Zitat Bray, D.: Axonal growth in response to experimentally applied mechanical tension. Developmental Biology 102, 379–89 (1984)CrossRef Bray, D.: Axonal growth in response to experimentally applied mechanical tension. Developmental Biology 102, 379–89 (1984)CrossRef
25.
Zurück zum Zitat Bernal, R., Pullarkat, P., and Melo, F.: Mechanical properties of axons. Physical Review Letters 99, 018301 (2007)CrossRef Bernal, R., Pullarkat, P., and Melo, F.: Mechanical properties of axons. Physical Review Letters 99, 018301 (2007)CrossRef
26.
Zurück zum Zitat Bernal, R., Melo, F., and Pullarkat, P.: Drag force as a tool to test the active mechanical response of PC12 neurites. Biophysical Journal 98, 515–523 (2010)CrossRef Bernal, R., Melo, F., and Pullarkat, P.: Drag force as a tool to test the active mechanical response of PC12 neurites. Biophysical Journal 98, 515–523 (2010)CrossRef
27.
Zurück zum Zitat Hanein, Y., Tadmor, O., Anava, S., and Ayali, A.: Neuronal soma migration is determined by neurite tension. Neuroscience 172, 572–579 (2011)CrossRef Hanein, Y., Tadmor, O., Anava, S., and Ayali, A.: Neuronal soma migration is determined by neurite tension. Neuroscience 172, 572–579 (2011)CrossRef
28.
Zurück zum Zitat Sorkin, R., Greenbaum, A., David-Pur, M., Anava, S., Ayali, A., Ben-Jacob, E., and Hanein, Y.: Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20, 015101 (2009)CrossRef Sorkin, R., Greenbaum, A., David-Pur, M., Anava, S., Ayali, A., Ben-Jacob, E., and Hanein, Y.: Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20, 015101 (2009)CrossRef
29.
Zurück zum Zitat Xie, C., Hanson, L., Xie, W., Lin, Z., Cui, B., and Cui, Y.: Noninvasive neuron pinning with nanopillar arrays. Nano Letters 10, 4020–4 (2010)CrossRef Xie, C., Hanson, L., Xie, W., Lin, Z., Cui, B., and Cui, Y.: Noninvasive neuron pinning with nanopillar arrays. Nano Letters 10, 4020–4 (2010)CrossRef
30.
Zurück zum Zitat Bareket-Keren, L., and Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in Neural Circuits 6, 122 (2012). doi: 10.3389/fncir.2012.00122 Bareket-Keren, L., and Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in Neural Circuits 6, 122 (2012). doi: 10.​3389/​fncir.​2012.​00122
31.
Zurück zum Zitat Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z. R., Ben-Jacob, E., and Hanein, Y.: Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 18, 035201 (2007)CrossRef Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z. R., Ben-Jacob, E., and Hanein, Y.: Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 18, 035201 (2007)CrossRef
32.
Zurück zum Zitat Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan, M., and Ozkan, C.: Guided neurite growth on patterned carbon nanotubes. Sensors and Actuators B: Chemical 106, 843–850 (2005)CrossRef Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan, M., and Ozkan, C.: Guided neurite growth on patterned carbon nanotubes. Sensors and Actuators B: Chemical 106, 843–850 (2005)CrossRef
33.
Zurück zum Zitat Gabay, T., Jakobs, E., Ben-Jacob, E., and Hanein, Y.: Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical Mechanics and Its Applications 350, 611–621 (2005)CrossRef Gabay, T., Jakobs, E., Ben-Jacob, E., and Hanein, Y.: Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical Mechanics and Its Applications 350, 611–621 (2005)CrossRef
34.
Zurück zum Zitat Greenbaum, A., Anava, S., and Ayali, A.: One-to-one neuron–electrode interfacing. Journal of Neuroscience Methods 182, 219–224 (2009)CrossRef Greenbaum, A., Anava, S., and Ayali, A.: One-to-one neuron–electrode interfacing. Journal of Neuroscience Methods 182, 219–224 (2009)CrossRef
35.
Zurück zum Zitat Shein, M., Greenbaum, A., Gabay, T., Sorkin, R., David-Pur, M., Ben-Jacob, E., and Hanein, Y.: Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomedical Microdevices 11, 495–501 (2009)CrossRef Shein, M., Greenbaum, A., Gabay, T., Sorkin, R., David-Pur, M., Ben-Jacob, E., and Hanein, Y.: Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomedical Microdevices 11, 495–501 (2009)CrossRef
36.
Zurück zum Zitat Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., and Sernagor, E.: Carbon nanotube electrodes for effective interfacing with retinal tissue. Frontiers in Neuroengineering 2, 4 (2009)CrossRef Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., and Sernagor, E.: Carbon nanotube electrodes for effective interfacing with retinal tissue. Frontiers in Neuroengineering 2, 4 (2009)CrossRef
37.
Zurück zum Zitat Eleftheriou, C. G., Zimmermann, J., Kjeldsen, H., David-Pur, M., Hanein, Y., and Sernagor, E.: Towards the development of carbon nanotube based retinal implant technology: electrophysiological and ultrastructural evidence of coupling at the hybrid interface. Proceedings of the 8th International MEA Meeting on Substrate Integrated Microelectrode Arrys. Reutlingen, Germany (2012) Eleftheriou, C. G., Zimmermann, J., Kjeldsen, H., David-Pur, M., Hanein, Y., and Sernagor, E.: Towards the development of carbon nanotube based retinal implant technology: electrophysiological and ultrastructural evidence of coupling at the hybrid interface. Proceedings of the 8th International MEA Meeting on Substrate Integrated Microelectrode Arrys. Reutlingen, Germany (2012)
38.
Zurück zum Zitat Janders, M., Egert, U., Stelzle, M., and Nisch, W.: Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Amsterdam: IEEE), 245–247 (1996) Janders, M., Egert, U., Stelzle, M., and Nisch, W.: Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Amsterdam: IEEE), 245–247 (1996)
39.
Zurück zum Zitat Shein Idelson, M., Ben-Jacob, E., and Hanein, Y.: Innate synchronous oscillations in freely-organized small neuronal circuits. PLoS One 5, e14443 (2010)CrossRef Shein Idelson, M., Ben-Jacob, E., and Hanein, Y.: Innate synchronous oscillations in freely-organized small neuronal circuits. PLoS One 5, e14443 (2010)CrossRef
40.
Zurück zum Zitat Sirivisoot, S., Yao, C., Xiao, X., Sheldon, B. W., and Webster, T. J.: Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 18, 365102 (2007)CrossRef Sirivisoot, S., Yao, C., Xiao, X., Sheldon, B. W., and Webster, T. J.: Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 18, 365102 (2007)CrossRef
41.
Zurück zum Zitat Gabriel, G., Gómez-Martínez, R., and Villa, R.: Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance. Physiological Measurement 29, S203–212 (2008)CrossRef Gabriel, G., Gómez-Martínez, R., and Villa, R.: Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance. Physiological Measurement 29, S203–212 (2008)CrossRef
42.
Zurück zum Zitat Minnikanti, S., and Peixoto, N.: Carbon nanotubes applications on electron devices. In: J. M. Marulanda (ed.), Implantable electrodes with carbon nanotube coatings. InTech: Croatia (2011) Minnikanti, S., and Peixoto, N.: Carbon nanotubes applications on electron devices. In: J. M. Marulanda (ed.), Implantable electrodes with carbon nanotube coatings. InTech: Croatia (2011)
Metadaten
Titel
Carbon Nanotubes for Neuron–Electrode Interface with Improved Mechanical Performance
verfasst von
David Rand
Yael Hanein
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4899-8038-0_1

Neuer Inhalt