Skip to main content
Erschienen in: Environmental Earth Sciences 1/2013

01.09.2013 | Original Article

Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model

verfasst von: Giha Lee, Wansik Yu, Kwansue Jung, APIP

Erschienen in: Environmental Earth Sciences | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing rainfall intensity and frequency due to extreme climate change and haphazard land development are aggravating soil erosion problems in Korea. A quantitative estimate of the amount of sediment from the catchment is essential for soil and water conservation planning and management. Essential to catchment-scale soil erosion modeling is the ability to represent the fluvial transport system associated with the processes of detachment, transport, and deposition of soil particles due to rainfall and surface flow. This study applied a spatially distributed hydrologic model of rainfall–runoff–sediment yield simulation for flood events due to typhoons and then assessed the impact of topographic and climatic factors on erosion and deposition at a catchment scale. Measured versus predicted values of runoff and sediment discharge were acceptable in terms of applied model performance measures despite underestimation of simulated sediment loads near peak concentrations. Erosion occurred widely throughout the catchment, whereas deposition appeared near the channel network grid cells with a short hillslope flow path distance and gentle slope; the critical values of both topographic factors, providing only deposition, were observed at 3.5 (km) (hillslope flow path distance) and 0.2 (m/m) (local slope), respectively. In addition, spatially heterogeneous rainfall intensity, dependent on Thiessen polygons, led to spatially distinct net-erosion patterns; erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat APIP (2008) Watershed hydrological modeling based on runoff and sediment transport processes: a physically-based distributed model and its lumping. Master’s Thesis, Kyoto University APIP (2008) Watershed hydrological modeling based on runoff and sediment transport processes: a physically-based distributed model and its lumping. Master’s Thesis, Kyoto University
Zurück zum Zitat Busacca AJ, Cook CA, Mulla DJ (1993) Comparing landscape scale estimation of soil erosion in the Palouse using Cs-137 and RUSLE. J Soil Water Conserv 48:361–367 Busacca AJ, Cook CA, Mulla DJ (1993) Comparing landscape scale estimation of soil erosion in the Palouse using Cs-137 and RUSLE. J Soil Water Conserv 48:361–367
Zurück zum Zitat Chae J, Jung M, Torii N, Okimura T (2010) A risk evaluation method of slope failure due to rainfall using a digital terrain model. J Korea Soc Civil Eng 30(6C):219–229 (in Korean) Chae J, Jung M, Torii N, Okimura T (2010) A risk evaluation method of slope failure due to rainfall using a digital terrain model. J Korea Soc Civil Eng 30(6C):219–229 (in Korean)
Zurück zum Zitat De Roo APJ, Wesseling CG, Ritsems CJ (1996a) LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. I: theory, input and output. Hydrol Process 10:1107–1117CrossRef De Roo APJ, Wesseling CG, Ritsems CJ (1996a) LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. I: theory, input and output. Hydrol Process 10:1107–1117CrossRef
Zurück zum Zitat De Roo APJ, Offermans RJE, Cremers NHDT (1996b) LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application. Hydrol Process 10:1119–1126CrossRef De Roo APJ, Offermans RJE, Cremers NHDT (1996b) LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application. Hydrol Process 10:1119–1126CrossRef
Zurück zum Zitat Flanagan DC, Nearing MA (1995) USDA-water erosion prediction project hillslope profile and watershed model documentation. NSERL Report No. 10, USDAARS National Soil Erosion Research Laboratory, West Lafayette, Indiana Flanagan DC, Nearing MA (1995) USDA-water erosion prediction project hillslope profile and watershed model documentation. NSERL Report No. 10, USDAARS National Soil Erosion Research Laboratory, West Lafayette, Indiana
Zurück zum Zitat Foster GR (1982) Modeling the soil erosion process. In: Haan CT, Johnson HP, Brakensiek DL (eds) Hydrologic modeling of small watersheds. ASAE Monograph No. 5, ASAE, St. Joseph, pp 297–380 Foster GR (1982) Modeling the soil erosion process. In: Haan CT, Johnson HP, Brakensiek DL (eds) Hydrologic modeling of small watersheds. ASAE Monograph No. 5, ASAE, St. Joseph, pp 297–380
Zurück zum Zitat Foster GR, Meyer LD (1977) Soil erosion and sedimentation by water: an overview. In: ASAE (ed) Proceedings of the national symposium on soil erosion and sedimentation by water, pp 1–13 Foster GR, Meyer LD (1977) Soil erosion and sedimentation by water: an overview. In: ASAE (ed) Proceedings of the national symposium on soil erosion and sedimentation by water, pp 1–13
Zurück zum Zitat Govers G (1990) Empirical relationships on the transporting capacity of overland flow. IAHS Publ 189:45–63 Govers G (1990) Empirical relationships on the transporting capacity of overland flow. IAHS Publ 189:45–63
Zurück zum Zitat Ijjasz-Vasquez EJ, Bras RL (1995) Scaling regimes of local slope versus contributing area in digital elevation models. Geomorphology 12:299–311CrossRef Ijjasz-Vasquez EJ, Bras RL (1995) Scaling regimes of local slope versus contributing area in digital elevation models. Geomorphology 12:299–311CrossRef
Zurück zum Zitat Jetten V, Govers G, Hesse R (2003) Erosion models: quality and spatial predictions. Hydrol Process 17:887–990CrossRef Jetten V, Govers G, Hesse R (2003) Erosion models: quality and spatial predictions. Hydrol Process 17:887–990CrossRef
Zurück zum Zitat Johnson BE, Julien PY, Molnar DK, Watson CC (2000) The two dimensional-upland erosion model CASC2D-SED. J AWRA 36(1):31–42 Johnson BE, Julien PY, Molnar DK, Watson CC (2000) The two dimensional-upland erosion model CASC2D-SED. J AWRA 36(1):31–42
Zurück zum Zitat Julien PY, Saghafian B, Ogden FL, American Water Resources Association-AWRA (1995) Raster-based hydrologic modeling of spatially-varied surface runoff. Water Resour Bull 31(3):523–536CrossRef Julien PY, Saghafian B, Ogden FL, American Water Resources Association-AWRA (1995) Raster-based hydrologic modeling of spatially-varied surface runoff. Water Resour Bull 31(3):523–536CrossRef
Zurück zum Zitat Kalin L, Hantush MM (2003) Evaluation of sediment transport models and comparative application of two watershed models. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Kalin L, Hantush MM (2003) Evaluation of sediment transport models and comparative application of two watershed models. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency
Zurück zum Zitat K-water (2002) Hydrological investigation report of Yongdam dam basin K-water (2002) Hydrological investigation report of Yongdam dam basin
Zurück zum Zitat K-water (2003) Hydrological investigation report of Yongdam dam basin K-water (2003) Hydrological investigation report of Yongdam dam basin
Zurück zum Zitat K-water (2007) Hydrological investigation report of Yongdam dam basin K-water (2007) Hydrological investigation report of Yongdam dam basin
Zurück zum Zitat Lane LJ, Shirley ED, Singh VP (1988) Modelling erosion on hillslopes. In: Anderson MG (ed) Modelling geomorphological systems, chap 10. Wiley, Chichester Lane LJ, Shirley ED, Singh VP (1988) Modelling erosion on hillslopes. In: Anderson MG (ed) Modelling geomorphological systems, chap 10. Wiley, Chichester
Zurück zum Zitat Lee J, Jung J, Lee S (2007) A study on characteristic analysis of soil erosion models in Korea and foreign country. National Institute for Disaster Prevention, Nagaoka (in Korean) Lee J, Jung J, Lee S (2007) A study on characteristic analysis of soil erosion models in Korea and foreign country. National Institute for Disaster Prevention, Nagaoka (in Korean)
Zurück zum Zitat Lee J, Jung J, Huh B, Lee S (2008) A study on improvement of applicability of soil erosion prediction models in practical use. National Institute for Disaster Prevention, Nagaoka (in Korean) Lee J, Jung J, Huh B, Lee S (2008) A study on improvement of applicability of soil erosion prediction models in practical use. National Institute for Disaster Prevention, Nagaoka (in Korean)
Zurück zum Zitat Lee G, Tachikawa Y, Takara K (2009) Interaction between topographic and process parameters due to the spatial resolution of DEMs in distributed rainfall-runoff modeling. J Hydrol Eng 14(10):1059–1069CrossRef Lee G, Tachikawa Y, Takara K (2009) Interaction between topographic and process parameters due to the spatial resolution of DEMs in distributed rainfall-runoff modeling. J Hydrol Eng 14(10):1059–1069CrossRef
Zurück zum Zitat McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the universal soil loss equation. Trans ASAE 30(4):1387–1396 McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the universal soil loss equation. Trans ASAE 30(4):1387–1396
Zurück zum Zitat McCool DK, Foster GR, Mutchler CK, Meyer LD (1989) Revised slope length factor for the universal soil loss equation. Trans ASAE 32(5):1571–1576 McCool DK, Foster GR, Mutchler CK, Meyer LD (1989) Revised slope length factor for the universal soil loss equation. Trans ASAE 32(5):1571–1576
Zurück zum Zitat Morgan RPC, Quinton JN, Rickson RJ (1992) EUROSEM documentation manual. Silsoe College, Silsoe Morgan RPC, Quinton JN, Rickson RJ (1992) EUROSEM documentation manual. Silsoe College, Silsoe
Zurück zum Zitat Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Chisci G, Torri D (1998) The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Sur Process Landf 23:527–544CrossRef Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Chisci G, Torri D (1998) The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Sur Process Landf 23:527–544CrossRef
Zurück zum Zitat Morris GL, Fan J (1997) Reservoir sedimentation handbook. McGraw-Hill, New York Morris GL, Fan J (1997) Reservoir sedimentation handbook. McGraw-Hill, New York
Zurück zum Zitat Nearing MA, Page DI, Simanton JR, Lane LJ (1989) Determining erodibility parameters from rangeland field data for a process-based erosion model. Trans ASAE 32(3):919–924 Nearing MA, Page DI, Simanton JR, Lane LJ (1989) Determining erodibility parameters from rangeland field data for a process-based erosion model. Trans ASAE 32(3):919–924
Zurück zum Zitat O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data: computer vision. Graph Image Process 120:328–344 O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data: computer vision. Graph Image Process 120:328–344
Zurück zum Zitat Park M, Son K (1998) Study on the sediment yield estimation due to land development (I), Research Report No. 97-04. National Institute for Disaster Prevention, Nagaoka (in Korean) Park M, Son K (1998) Study on the sediment yield estimation due to land development (I), Research Report No. 97-04. National Institute for Disaster Prevention, Nagaoka (in Korean)
Zurück zum Zitat Sayama T (2003) Evaluation of reliability and complexity of rainfall-sediment-runoff models. Master’s Thesis, Kyoto University Sayama T (2003) Evaluation of reliability and complexity of rainfall-sediment-runoff models. Master’s Thesis, Kyoto University
Zurück zum Zitat Shiiba M, Ichikawa Y, Sakakibara T, Tachikawa Y (1999) A new numerical representation form of basin topography. J Hydraul Coast Environ Eng, JSCE 621:1–9 (in Japanese) Shiiba M, Ichikawa Y, Sakakibara T, Tachikawa Y (1999) A new numerical representation form of basin topography. J Hydraul Coast Environ Eng, JSCE 621:1–9 (in Japanese)
Zurück zum Zitat Singh VP (2001) Kinematic wave modeling in water resources: a historical perspective. Hydrol Process 15:671–706CrossRef Singh VP (2001) Kinematic wave modeling in water resources: a historical perspective. Hydrol Process 15:671–706CrossRef
Zurück zum Zitat Storm DE, Barfield BJ, Ormsbee LE (1990) Hydrology and sedimentology of dynamic rill networks. I. Erosion model for dynamic rill networks, Research Report No. 178, Kentucky Water Resources Research Institute, University of Kentucky, Lexington, KY Storm DE, Barfield BJ, Ormsbee LE (1990) Hydrology and sedimentology of dynamic rill networks. I. Erosion model for dynamic rill networks, Research Report No. 178, Kentucky Water Resources Research Institute, University of Kentucky, Lexington, KY
Zurück zum Zitat Tachikawa Y, Nagatani G, Takara K (2004) Development of stage-discharge relationship equation incorporating saturated–unsaturated flow mechanism. Ann J Hydraul Eng, JSCE 48:7–12 (in Japanese)CrossRef Tachikawa Y, Nagatani G, Takara K (2004) Development of stage-discharge relationship equation incorporating saturated–unsaturated flow mechanism. Ann J Hydraul Eng, JSCE 48:7–12 (in Japanese)CrossRef
Zurück zum Zitat Takasao T, Shiiba M (1988) Incorporation of the effect of concentration of flow into the kinematic wave equations and its applications to runoff system lumping. J Hydrol 102:301–322CrossRef Takasao T, Shiiba M (1988) Incorporation of the effect of concentration of flow into the kinematic wave equations and its applications to runoff system lumping. J Hydrol 102:301–322CrossRef
Zurück zum Zitat Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, prediction, measurement and control. Wiley, New York Toy TJ, Foster GR, Renard KG (2002) Soil erosion: processes, prediction, measurement and control. Wiley, New York
Zurück zum Zitat Turker GE, Catani F, Rinaldo A, Bras RL (2001) Statistical analysis of drainage density from digital terrain data. Geomorphology 36:187–202CrossRef Turker GE, Catani F, Rinaldo A, Bras RL (2001) Statistical analysis of drainage density from digital terrain data. Geomorphology 36:187–202CrossRef
Zurück zum Zitat Vente JD, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth Sci Rev 71:95–125CrossRef Vente JD, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth Sci Rev 71:95–125CrossRef
Zurück zum Zitat Vieux BE (2004) Distributed hydrological modeling using GIS. Kluwer, Dordrecht Vieux BE (2004) Distributed hydrological modeling using GIS. Kluwer, Dordrecht
Zurück zum Zitat Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642 Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.​1029/​2002WR001642
Zurück zum Zitat Woolhiser DA, Smith RE, Goodrich DE (1990) KINEROS, a kinematic runoff and erosion model: documentation and user manual, USDA, ARS-77 Woolhiser DA, Smith RE, Goodrich DE (1990) KINEROS, a kinematic runoff and erosion model: documentation and user manual, USDA, ARS-77
Zurück zum Zitat Yang CT (1972) Unit stream power and sediment transport. J Hydraul Div ASCE 98(HYI0):1805–1826 Yang CT (1972) Unit stream power and sediment transport. J Hydraul Div ASCE 98(HYI0):1805–1826
Zurück zum Zitat Yang CT (1973) Incipient motion and sediment transport. J Hydraul Div ASCE 99(HY10):1679–1704 Yang CT (1973) Incipient motion and sediment transport. J Hydraul Div ASCE 99(HY10):1679–1704
Metadaten
Titel
Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model
verfasst von
Giha Lee
Wansik Yu
Kwansue Jung
APIP
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 1/2013
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-012-2101-5

Weitere Artikel der Ausgabe 1/2013

Environmental Earth Sciences 1/2013 Zur Ausgabe