Skip to main content

2020 | OriginalPaper | Buchkapitel

Cationic Electrocatalysis in Effecting the Electrosynthesis of Tungsten Carbide Nanopowders in Molten Salts

verfasst von : I. A. Novoselova, I. N. Skryptun, A. A. Omelchuk, V. V. Soloviev

Erschienen in: Methods for Electrocatalysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter presents the theoretical and experimental concepts of the phenomenon of cationic electrocatalysis during the discharge of complicated anionic complexes in molten salts. These ideas are based on the acid-base mechanism of formation of electrochemically active species (EASs). The essence of cationic electrocatalysis is the transformation of anionic complexes into a new active state under the action of cations with a strong polarizing effect. This leads to a change in the energy, electronic, and structural state of the anion, the formation of new EASs, a change in their composition, in the rate of EAS formation and charge transfer. The performed quantum chemical calculations allow one to conclude that the cationic composition of the melt catalyzes the formation of new EASs both in the bulk phase of the melt and at the electrode-melt interface. Using voltammetry, it was shown that the addition of Mg2+ cations to tungstate-containing melts leads to a change of the nature of the electrode process and to an increase of an order of magnitude in heterogeneous rate constant for charge transfer. The tungsten deposition potential shifts to the positive potential values up to the potentials of carbon deposition from CO2. The proposed approach allowed us to realize in practice the synthesis of nanoscale powders of tungsten carbides and composite mixtures based on them by electrolysis of molten salt electrolytes. The obtained materials have a high potential for application for solving various tasks of electrocatalysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andrieux JI, Weiss G (1948) Reparation des composes du molybdene et du tungstene par electrolyss ignee. Bull Soc Chem France 15(5):598–601 Andrieux JI, Weiss G (1948) Reparation des composes du molybdene et du tungstene par electrolyss ignee. Bull Soc Chem France 15(5):598–601
2.
Zurück zum Zitat Shapoval VI, Delimarskii YK (1973) Polarographic regularities of kinetic waves taking into account the acid-base properties of electrolytes. Theor Exp Chem 9(6):748–754 (in Russian) Shapoval VI, Delimarskii YK (1973) Polarographic regularities of kinetic waves taking into account the acid-base properties of electrolytes. Theor Exp Chem 9(6):748–754 (in Russian)
3.
Zurück zum Zitat Shapoval VI, Delimarskii YK, Grishenko VF (1974) Electrochemical processes with fast and slow acid-base reactions in molten electrolytes. In: Ionic melts, iss. 1. Naukova Dumka, Kiev, pp 222–241 (in Russian) Shapoval VI, Delimarskii YK, Grishenko VF (1974) Electrochemical processes with fast and slow acid-base reactions in molten electrolytes. In: Ionic melts, iss. 1. Naukova Dumka, Kiev, pp 222–241 (in Russian)
4.
Zurück zum Zitat Delimarskii YK, Gorodyskii AV, Zarubitskii OG, Panov EV, Shapoval VI (eds) (1975) Electrode processes in ionic melts. Naukova Dumka, Kiev (in Russian) Delimarskii YK, Gorodyskii AV, Zarubitskii OG, Panov EV, Shapoval VI (eds) (1975) Electrode processes in ionic melts. Naukova Dumka, Kiev (in Russian)
5.
Zurück zum Zitat Shapoval VI (1975) Kinetics of electroreduction of oxygen-containing anions in molten salts. Dissertation, Institute of General and Inorganic Chemistry, Kiev (in Russian) Shapoval VI (1975) Kinetics of electroreduction of oxygen-containing anions in molten salts. Dissertation, Institute of General and Inorganic Chemistry, Kiev (in Russian)
6.
Zurück zum Zitat Flood H, Forland T (1947) The acid-base reaction in molten salts. Acta Chem Scand 1:591–604 Flood H, Forland T (1947) The acid-base reaction in molten salts. Acta Chem Scand 1:591–604
7.
Zurück zum Zitat Shapoval VI, Kushkhov KB, Novoselova IA (1982) Thermodynamic foundation of electrochemical synthesis of tungsten, molybdenum and boron carbides. Ukr Khim Zh 46(7):738–742 (in Russian) Shapoval VI, Kushkhov KB, Novoselova IA (1982) Thermodynamic foundation of electrochemical synthesis of tungsten, molybdenum and boron carbides. Ukr Khim Zh 46(7):738–742 (in Russian)
8.
Zurück zum Zitat Shapoval VI, Kushkov KB, Novoselova IA (1985) High-temperature electrochemical synthesis of tungsten carbide. Rus J Appl Chem 58(5):1027–1030 (in Russian) Shapoval VI, Kushkov KB, Novoselova IA (1985) High-temperature electrochemical synthesis of tungsten carbide. Rus J Appl Chem 58(5):1027–1030 (in Russian)
9.
Zurück zum Zitat Shapoval VI, Malyshev VV, Novoselova IA et al (1995) Modern problems of high-temperature electrochemical synthesis of IV-VI A groups transaction metals compounds. Usp Khim 64(2):133–141 (in Russian)CrossRef Shapoval VI, Malyshev VV, Novoselova IA et al (1995) Modern problems of high-temperature electrochemical synthesis of IV-VI A groups transaction metals compounds. Usp Khim 64(2):133–141 (in Russian)CrossRef
10.
Zurück zum Zitat Novoselova IA, Malyshev VV, Shapoval VI et al (1997) Theory of high-temperature electrochemical synthesis in ionic melts. Theor Found Chem Eng 31(3):286–295 (in Russian) Novoselova IA, Malyshev VV, Shapoval VI et al (1997) Theory of high-temperature electrochemical synthesis in ionic melts. Theor Found Chem Eng 31(3):286–295 (in Russian)
11.
Zurück zum Zitat Arai T, Yo Sugimoto, Komatasu N (1981) Carbide coating and bonding onto chromium-plated steel by immersion process in fused borax bath. J Met Finish Soc Jpn 32(5):240–245CrossRef Arai T, Yo Sugimoto, Komatasu N (1981) Carbide coating and bonding onto chromium-plated steel by immersion process in fused borax bath. J Met Finish Soc Jpn 32(5):240–245CrossRef
12.
Zurück zum Zitat Stulov YuV, Dolmatov VS, Dubrovskii AR et al (2017) Coatings by refractory metal carbides: deposition from molten salts, properties, application. Russ J Appl Chem 90(5):676–683 (in Russian)CrossRef Stulov YuV, Dolmatov VS, Dubrovskii AR et al (2017) Coatings by refractory metal carbides: deposition from molten salts, properties, application. Russ J Appl Chem 90(5):676–683 (in Russian)CrossRef
13.
Zurück zum Zitat Zhang Zh, Song Q, Jiang B et al (2019) Electrochemically assisted carbonization of Nb in molten salt. Surf Coat Technol 25:865–872CrossRef Zhang Zh, Song Q, Jiang B et al (2019) Electrochemically assisted carbonization of Nb in molten salt. Surf Coat Technol 25:865–872CrossRef
14.
Zurück zum Zitat Narayan R, Narayana BH (1981) Electrodeposited chromium-graphite composite coatings. J Electrochem Soc 128(8):1704–1708CrossRef Narayan R, Narayana BH (1981) Electrodeposited chromium-graphite composite coatings. J Electrochem Soc 128(8):1704–1708CrossRef
15.
Zurück zum Zitat Xie H, Zhao H, Liao J et al (2018) Electrochemically controllable coating of a functional silicon film on carbon materials. Electrochim Acta 269:610–616CrossRef Xie H, Zhao H, Liao J et al (2018) Electrochemically controllable coating of a functional silicon film on carbon materials. Electrochim Acta 269:610–616CrossRef
16.
Zurück zum Zitat Baraboshkin AN (1978) Electrocrystalization of metals in molten salts. Nauka, Moscow (in Russian) Baraboshkin AN (1978) Electrocrystalization of metals in molten salts. Nauka, Moscow (in Russian)
17.
Zurück zum Zitat Shapoval VI (1981) Cationic catalysis during electroreduction of complex anions in molten salts. In: Proceedings of the XII Mendeleev congress, vol 3. Nauka, Moscow, pp 336–337 (in Russian) Shapoval VI (1981) Cationic catalysis during electroreduction of complex anions in molten salts. In: Proceedings of the XII Mendeleev congress, vol 3. Nauka, Moscow, pp 336–337 (in Russian)
18.
Zurück zum Zitat Shapoval VI, Kushkov KhB (1986) Cation catalysis in complex processes of electroreduction in molten salts. In: Kublanovskii VS, Litovchenko KI (eds) Electrocatalysis and electrocatalytical processes. Naukova Dumka, Kiev, pp 17–29 (in Russian) Shapoval VI, Kushkov KhB (1986) Cation catalysis in complex processes of electroreduction in molten salts. In: Kublanovskii VS, Litovchenko KI (eds) Electrocatalysis and electrocatalytical processes. Naukova Dumka, Kiev, pp 17–29 (in Russian)
19.
Zurück zum Zitat Zhang Y (1982) Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states. Inorg Chem 21(11):3886–3889CrossRef Zhang Y (1982) Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states. Inorg Chem 21(11):3886–3889CrossRef
20.
Zurück zum Zitat Zhang Y (1982) Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids. Inorg. Chem. 21(11):3889–3893CrossRef Zhang Y (1982) Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids. Inorg. Chem. 21(11):3889–3893CrossRef
21.
Zurück zum Zitat Kushkhov KB, Shapoval VI, Novoselova IA (1986) Thermodynamic foundation of electrochemical synthesis of refractory metal compounds. Available from VINITI, Moscow. pp 7147–V86 (in Russian) Kushkhov KB, Shapoval VI, Novoselova IA (1986) Thermodynamic foundation of electrochemical synthesis of refractory metal compounds. Available from VINITI, Moscow. pp 7147–V86 (in Russian)
22.
Zurück zum Zitat Shapoval VI, Kushkhov KB, Vasilenko VA (1979) The effect of Mg2+ cations on kinetics of electroreduction of WO42− in the melt KCl-NaCl. Ukr Khim Zh 45(6):509–515 (in Russian) Shapoval VI, Kushkhov KB, Vasilenko VA (1979) The effect of Mg2+ cations on kinetics of electroreduction of WO42− in the melt KCl-NaCl. Ukr Khim Zh 45(6):509–515 (in Russian)
23.
Zurück zum Zitat Novoselova IA, Kuleshov SV, Volkov SV et al (2016) Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim Acta 211:343–355CrossRef Novoselova IA, Kuleshov SV, Volkov SV et al (2016) Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim Acta 211:343–355CrossRef
25.
Zurück zum Zitat Nemukhin AV, Grigorenko BL, Granovsky AA (2004) Molecular modeling by using the PC GAMESS program: from diatomic molecules to enzymes. Vestn Mosk Univ Khim 45(2):75–102 (in Russian) Nemukhin AV, Grigorenko BL, Granovsky AA (2004) Molecular modeling by using the PC GAMESS program: from diatomic molecules to enzymes. Vestn Mosk Univ Khim 45(2):75–102 (in Russian)
26.
Zurück zum Zitat Soloviev VV, Chernenko LO (2005) Modeling of the joint influence of the electrode surface and cationic and electric fields on the processes of tungstate anion electroreduction. Vestn Kharkov National Univ 648:210–213 (in Russian) Soloviev VV, Chernenko LO (2005) Modeling of the joint influence of the electrode surface and cationic and electric fields on the processes of tungstate anion electroreduction. Vestn Kharkov National Univ 648:210–213 (in Russian)
27.
Zurück zum Zitat Lowdin P (1964) Molecular orbitals in the exact SCF theory. In: Molecular orbitals in chemistry, physics, and biology. Mulliken dedicatory volume, Academic Press, Inc., New York, pp 37–55 Lowdin P (1964) Molecular orbitals in the exact SCF theory. In: Molecular orbitals in chemistry, physics, and biology. Mulliken dedicatory volume, Academic Press, Inc., New York, pp 37–55
28.
Zurück zum Zitat Lowdin P (1966) The calculation of upper and lower bounds of energy Eigen values in perturbation theory by means of partitioning techniques. In: Wilcox CH (ed) Perturbation theory and its application in quantum mechanics. Proceedings of Madison Symposium, John Wiley and Sons, Inc, pp 255–294 Lowdin P (1966) The calculation of upper and lower bounds of energy Eigen values in perturbation theory by means of partitioning techniques. In: Wilcox CH (ed) Perturbation theory and its application in quantum mechanics. Proceedings of Madison Symposium, John Wiley and Sons, Inc, pp 255–294
29.
Zurück zum Zitat Lowdin P (1967) Quantumn theory of time-dependent phenomena treated by the evolution operator technique. Adv Quant Chem 3:323–381CrossRef Lowdin P (1967) Quantumn theory of time-dependent phenomena treated by the evolution operator technique. Adv Quant Chem 3:323–381CrossRef
30.
Zurück zum Zitat Krishtalik LI (1979) Electrode reactions. The mechanism of the elementary act. Nauka, Moscow, pp 34–44 (in Russian) Krishtalik LI (1979) Electrode reactions. The mechanism of the elementary act. Nauka, Moscow, pp 34–44 (in Russian)
31.
Zurück zum Zitat Kushkhov KB, Shapoval VI (1982) The effect of cations of acids on thermodynamics and kinetics of electroreduction of WO42− in KCl-NaCl melt. In: Ionic melts, Naukova Dumka Kiev, pp. 55–64 (in Russian) Kushkhov KB, Shapoval VI (1982) The effect of cations of acids on thermodynamics and kinetics of electroreduction of WO42− in KCl-NaCl melt. In: Ionic melts, Naukova Dumka Kiev, pp. 55–64 (in Russian)
32.
Zurück zum Zitat Soloviev VV, Chernenko LO (2009) Modeling of the effect of the cationic composition of the melt on the structural features of electrochemical active species. Ukr Khim Zh 75(1):47–52 (in Russian) Soloviev VV, Chernenko LO (2009) Modeling of the effect of the cationic composition of the melt on the structural features of electrochemical active species. Ukr Khim Zh 75(1):47–52 (in Russian)
33.
Zurück zum Zitat Brauer G (1981) Handbuch der praparativen anorganischen chemie. Handbook of preparative inorganic chemistry, 3rd edn. vol 3. F. Enke, Stuttgart. Russian translation: Mir Moscow (1985) p 974 (in Russian) Brauer G (1981) Handbuch der praparativen anorganischen chemie. Handbook of preparative inorganic chemistry, 3rd edn. vol 3. F. Enke, Stuttgart. Russian translation: Mir Moscow (1985) p 974 (in Russian)
34.
Zurück zum Zitat Novoselova IA, Volkov SV, Oliinyk NF et al (2003) High-temperature electrochemical synthesis of carbon-containing inorganic compounds under excessive carbon dioxide pressure. J Min Metallurgy B: Metallurgy 39(1–2):281–293CrossRef Novoselova IA, Volkov SV, Oliinyk NF et al (2003) High-temperature electrochemical synthesis of carbon-containing inorganic compounds under excessive carbon dioxide pressure. J Min Metallurgy B: Metallurgy 39(1–2):281–293CrossRef
35.
Zurück zum Zitat Novoselova IA, Kuleshov SV, Fedoryshena OM et al (2016) Electrochemical synthesis of Tungsten carbides in molten salts for electrocatalysis. Ukr Khim Zh 82(11):67–76 (in Ukraine) Novoselova IA, Kuleshov SV, Fedoryshena OM et al (2016) Electrochemical synthesis of Tungsten carbides in molten salts for electrocatalysis. Ukr Khim Zh 82(11):67–76 (in Ukraine)
36.
Zurück zum Zitat Novoselova IA, Kuleshov SV, Fedoryshena EN et al (2018) Electrochemical synthesis of tungsten carbide in molten salts, its properties and applications. ECS Trans 86(14):81–94CrossRef Novoselova IA, Kuleshov SV, Fedoryshena EN et al (2018) Electrochemical synthesis of tungsten carbide in molten salts, its properties and applications. ECS Trans 86(14):81–94CrossRef
Metadaten
Titel
Cationic Electrocatalysis in Effecting the Electrosynthesis of Tungsten Carbide Nanopowders in Molten Salts
verfasst von
I. A. Novoselova
I. N. Skryptun
A. A. Omelchuk
V. V. Soloviev
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-27161-9_9