Skip to main content
Erschienen in:
Buchtitelbild

2015 | Online First | Buchkapitel

Characterization of Bacterial Symbionts in Deep-Sea Fauna: Protocols for Sample Conditioning, Fluorescence In Situ Hybridization, and Image Analysis

verfasst von : Sébastien Duperron

Erschienen in: Springer Protocols Handbooks

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Symbioses with bacteria are key adaptations allowing various groups of metazoans to reach high biomasses at deep sea reducing habitats including hydrothermal vents and cold seeps. Characterizing these associations is challenging due to the constraints associated with work on deep-sea organisms. These include limited sample availability, impact of recovery procedures and shipment on sample quality, and general lack of environmental data. In this chapter, a standard procedure for sample processing at sea which can maximize sample use back in the laboratory is presented, with example protocols for sample fixation, fluorescence in situ hybridization (FISH)-based localization of symbionts in animal tissues, and estimation of their relative abundances in the case of multiple symbioses.
Literatur
1.
Zurück zum Zitat McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236CrossRefPubMedPubMedCentral McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosyst. Elsevier, World Deep-Sea, pp 81–110 Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosyst. Elsevier, World Deep-Sea, pp 81–110
3.
Zurück zum Zitat Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefPubMed Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefPubMed
4.
Zurück zum Zitat Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Env Microbiol Rep 1:319–335CrossRef Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Env Microbiol Rep 1:319–335CrossRef
5.
Zurück zum Zitat Zielinski FU, Pernthaler A, Duperron S et al (2009) Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ Microbiol 11:1150–1167CrossRefPubMed Zielinski FU, Pernthaler A, Duperron S et al (2009) Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ Microbiol 11:1150–1167CrossRefPubMed
6.
Zurück zum Zitat Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) The vent and seep biota. Springer, Netherlands, pp 137–167 Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) The vent and seep biota. Springer, Netherlands, pp 137–167
7.
Zurück zum Zitat Raggi L, Schubotz F, Hinrichs K-U et al (2012) Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ Microbiol 15:1969–1987CrossRefPubMed Raggi L, Schubotz F, Hinrichs K-U et al (2012) Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ Microbiol 15:1969–1987CrossRefPubMed
8.
Zurück zum Zitat Rodrigues CF, Cunha MR, Genio L, Duperron S (2013) A complex picture of associations between two host mussels and symbiotic bacteria in the Northeast Atlantic. Naturwissenschaften 100:21–31CrossRefPubMed Rodrigues CF, Cunha MR, Genio L, Duperron S (2013) A complex picture of associations between two host mussels and symbiotic bacteria in the Northeast Atlantic. Naturwissenschaften 100:21–31CrossRefPubMed
9.
Zurück zum Zitat Gros O, Liberge M, Heddi A et al (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6254–6257CrossRef Gros O, Liberge M, Heddi A et al (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6254–6257CrossRef
10.
Zurück zum Zitat Harmer TL, Rotjan RD, Nussbaumer AD et al (2008) Free-living tube worm endosymbionts found at deep-sea vents. Appl Environ Microbiol 74:3895–3898CrossRefPubMedPubMedCentral Harmer TL, Rotjan RD, Nussbaumer AD et al (2008) Free-living tube worm endosymbionts found at deep-sea vents. Appl Environ Microbiol 74:3895–3898CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Petersen JM, Wentrup C, Verna C et al (2012) Origins and evolutionary flexibility of chemosynthetic symbionts from Deep-Sea animals. Biol Bull 223:123–137CrossRefPubMed Petersen JM, Wentrup C, Verna C et al (2012) Origins and evolutionary flexibility of chemosynthetic symbionts from Deep-Sea animals. Biol Bull 223:123–137CrossRefPubMed
12.
Zurück zum Zitat Szafranski KM, Gaudron SM, Duperron S (2014) Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae). Naturwissenschaften 101:373–383CrossRefPubMed Szafranski KM, Gaudron SM, Duperron S (2014) Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae). Naturwissenschaften 101:373–383CrossRefPubMed
13.
Zurück zum Zitat Vuillemin R, Le Roux D, Dorval P et al (2009) CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Res Part Oceanogr Res Pap 56:1391–1399CrossRef Vuillemin R, Le Roux D, Dorval P et al (2009) CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Res Part Oceanogr Res Pap 56:1391–1399CrossRef
14.
Zurück zum Zitat Wankel SD, Huang Y, Gupta M et al (2013) Characterizing the distribution of methane sources and cycling in the deep sea via in situ stable isotope analysis. Environ Sci Technol 47:1478–1486PubMed Wankel SD, Huang Y, Gupta M et al (2013) Characterizing the distribution of methane sources and cycling in the deep sea via in situ stable isotope analysis. Environ Sci Technol 47:1478–1486PubMed
15.
Zurück zum Zitat Carlier A, Ritt B, Rodrigues CF et al (2010) Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Mar Biol 157:2545–2565CrossRef Carlier A, Ritt B, Rodrigues CF et al (2010) Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Mar Biol 157:2545–2565CrossRef
16.
Zurück zum Zitat Halary S, Riou V, Gaill F et al (2008) 3D FISH for the quantification of methane- and sulphur-oxidising endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2:284–292CrossRefPubMed Halary S, Riou V, Gaill F et al (2008) 3D FISH for the quantification of methane- and sulphur-oxidising endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2:284–292CrossRefPubMed
17.
Zurück zum Zitat Lorion J, Halary S, do Nascimento J et al (2012) Evolutionary history of Idas sp. Med, (Bivalvia: Mytilidae), a cold seep mussel bearing multiple symbionts. Cah Biol Mar 53:77–87 Lorion J, Halary S, do Nascimento J et al (2012) Evolutionary history of Idas sp. Med, (Bivalvia: Mytilidae), a cold seep mussel bearing multiple symbionts. Cah Biol Mar 53:77–87
18.
Zurück zum Zitat Stewart FJ, Young CR, Cavanaugh CM (2008) Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol Biol Evol 25:673–683CrossRefPubMed Stewart FJ, Young CR, Cavanaugh CM (2008) Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol Biol Evol 25:673–683CrossRefPubMed
19.
Zurück zum Zitat Decker C, Olu K, Arnaud-Haond S, Duperron S (2013) Physical proximity may promote lateral acquisition of bacterial symbionts in vesicomyid clams. PLoS One 8(7):e64830CrossRefPubMedPubMedCentral Decker C, Olu K, Arnaud-Haond S, Duperron S (2013) Physical proximity may promote lateral acquisition of bacterial symbionts in vesicomyid clams. PLoS One 8(7):e64830CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Shillito B, Jollivet D, Sarradin PM et al (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on vent smoker walls. Mar Ecol Prog Ser 216:141–149CrossRef Shillito B, Jollivet D, Sarradin PM et al (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on vent smoker walls. Mar Ecol Prog Ser 216:141–149CrossRef
21.
Zurück zum Zitat Shillito B, Gaill F, Ravaux J (2014) The ipocamp pressure incubator for deep-sea fauna. J Mar Sci Technol Taiwan 22:97–102 Shillito B, Gaill F, Ravaux J (2014) The ipocamp pressure incubator for deep-sea fauna. J Mar Sci Technol Taiwan 22:97–102
22.
Zurück zum Zitat Pradillon F, Shillito B, Chervin JC et al (2004) Pressure vessels for in vivo studies of deep-sea fauna. High Press Res 24:237–246CrossRef Pradillon F, Shillito B, Chervin JC et al (2004) Pressure vessels for in vivo studies of deep-sea fauna. High Press Res 24:237–246CrossRef
23.
Zurück zum Zitat Shillito B, Hamel G, Duchi C et al (2008) Live capture of megafauna from 2300 m depth, using a newly designed Pressurized Recovery Device. Deep-Sea Res Part -Oceanogr Res Pap 55:881–889CrossRef Shillito B, Hamel G, Duchi C et al (2008) Live capture of megafauna from 2300 m depth, using a newly designed Pressurized Recovery Device. Deep-Sea Res Part -Oceanogr Res Pap 55:881–889CrossRef
24.
Zurück zum Zitat Mullineaux LS, Mills SW, Sweetman AK et al (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Mar Ecol Prog Ser 293:1–16CrossRef Mullineaux LS, Mills SW, Sweetman AK et al (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Mar Ecol Prog Ser 293:1–16CrossRef
25.
Zurück zum Zitat Beaulieu SE, Mullineaux LS, Adams DK, Mills SW (2009) Comparison of a sediment trap and plankton pump for time-series sampling of larvae near deep-sea hydrothermal vents. Limnol Oceanogr Methods 7:235–248CrossRef Beaulieu SE, Mullineaux LS, Adams DK, Mills SW (2009) Comparison of a sediment trap and plankton pump for time-series sampling of larvae near deep-sea hydrothermal vents. Limnol Oceanogr Methods 7:235–248CrossRef
26.
Zurück zum Zitat Gaudron SM, Pradillon F, Pailleret M et al (2010) Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Mar Env Res 70:1–12CrossRef Gaudron SM, Pradillon F, Pailleret M et al (2010) Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Mar Env Res 70:1–12CrossRef
27.
Zurück zum Zitat Gros O, Maurin LC (2008) Easy flat embedding of oriented samples in hydrophilic resin (LR White) under controlled atmosphere: application allowing both nucleic acid hybridizations (CARD-FISH) and ultrastructural observations. Acta Histochem 110:427–431CrossRefPubMed Gros O, Maurin LC (2008) Easy flat embedding of oriented samples in hydrophilic resin (LR White) under controlled atmosphere: application allowing both nucleic acid hybridizations (CARD-FISH) and ultrastructural observations. Acta Histochem 110:427–431CrossRefPubMed
28.
Zurück zum Zitat Verna C, Ramette A, Wiklund H et al (2010) High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ Microbiol 12:2355–2370CrossRefPubMed Verna C, Ramette A, Wiklund H et al (2010) High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ Microbiol 12:2355–2370CrossRefPubMed
29.
Zurück zum Zitat Duperron S, De Beer D, Zbinden M et al (2009) Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiol Ecol 69:395–409CrossRefPubMed Duperron S, De Beer D, Zbinden M et al (2009) Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiol Ecol 69:395–409CrossRefPubMed
30.
Zurück zum Zitat Zimmermann J, Lott C, Weber M et al (2014) Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 16:3638–3656CrossRefPubMed Zimmermann J, Lott C, Weber M et al (2014) Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 16:3638–3656CrossRefPubMed
31.
Zurück zum Zitat Lösekann T, Robador A, Niemann H et al (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMed Lösekann T, Robador A, Niemann H et al (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMed
32.
Zurück zum Zitat Nussbaumer AD, Fisher CR, Bright M (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441:345–348CrossRefPubMed Nussbaumer AD, Fisher CR, Bright M (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441:345–348CrossRefPubMed
33.
Zurück zum Zitat Goffredi SK, Orphan VJ, Rouse GW et al (2005) Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 7:1369–1378CrossRefPubMed Goffredi SK, Orphan VJ, Rouse GW et al (2005) Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 7:1369–1378CrossRefPubMed
34.
Zurück zum Zitat Polz MF, Cavanaugh CM (1995) Unique dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Nat Acad Sci USA 92:7232–7236CrossRefPubMedPubMedCentral Polz MF, Cavanaugh CM (1995) Unique dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Nat Acad Sci USA 92:7232–7236CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Petersen JM, Ramette A, Lott C et al (2010) Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ Microbiol 12:2204–2218PubMed Petersen JM, Ramette A, Lott C et al (2010) Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ Microbiol 12:2204–2218PubMed
36.
Zurück zum Zitat Duperron S, Pottier M-A, Leger N et al (2013) A tale of two chitons: is habitat specialisation linked to distinct associated bacterial communities? FEMS Microbiol Ecol 83:552–567CrossRefPubMed Duperron S, Pottier M-A, Leger N et al (2013) A tale of two chitons: is habitat specialisation linked to distinct associated bacterial communities? FEMS Microbiol Ecol 83:552–567CrossRefPubMed
37.
Zurück zum Zitat Rodrigues CF, Duperron S (2011) Distinct symbiont lineages in three thyasirid species (Bivalvia: Thyasiridae) form the eastern Atlantic and Mediterranean Sea. Naturwissenschaften 98:281–287CrossRefPubMed Rodrigues CF, Duperron S (2011) Distinct symbiont lineages in three thyasirid species (Bivalvia: Thyasiridae) form the eastern Atlantic and Mediterranean Sea. Naturwissenschaften 98:281–287CrossRefPubMed
38.
Zurück zum Zitat Distel DL, Beaudoin DJ, Morrill W (2002) Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2002:6292–6299CrossRef Distel DL, Beaudoin DJ, Morrill W (2002) Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2002:6292–6299CrossRef
39.
Zurück zum Zitat Wentrup C, Wendeberg A, Schimak M et al (2014) Forever competent: deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ Microbiol 16:3699–3713CrossRefPubMed Wentrup C, Wendeberg A, Schimak M et al (2014) Forever competent: deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ Microbiol 16:3699–3713CrossRefPubMed
40.
Zurück zum Zitat Duperron S, Rodrigues CF, Leger N et al (2012) Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa). MicrobiologyOpen 1:467–480CrossRefPubMedPubMedCentral Duperron S, Rodrigues CF, Leger N et al (2012) Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa). MicrobiologyOpen 1:467–480CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Duperron S, Nadalig T, Caprais JC et al (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700CrossRefPubMedPubMedCentral Duperron S, Nadalig T, Caprais JC et al (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Duperron S, Sibuet M, MacGregor BJ et al (2007) Diversity, relative abundance, and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussels (Bivalvia: Mytilidae) from cold seeps in the Gulf of Mexico. Env Microbiol 9:1423–1438CrossRef Duperron S, Sibuet M, MacGregor BJ et al (2007) Diversity, relative abundance, and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussels (Bivalvia: Mytilidae) from cold seeps in the Gulf of Mexico. Env Microbiol 9:1423–1438CrossRef
43.
Zurück zum Zitat Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938CrossRefPubMedPubMedCentral Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Distel DL, Lee HKW, Cavanaugh CM (1995) Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92:9598–9602CrossRefPubMedPubMedCentral Distel DL, Lee HKW, Cavanaugh CM (1995) Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92:9598–9602CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Duperron S, Bergin C, Zielinski F et al (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and B. puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447CrossRefPubMed Duperron S, Bergin C, Zielinski F et al (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and B. puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447CrossRefPubMed
46.
Zurück zum Zitat Duperron S, Halary S, Lorion J et al (2008) Unexpected co-occurrence of 6 bacterial symbionts in the gill of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445CrossRefPubMed Duperron S, Halary S, Lorion J et al (2008) Unexpected co-occurrence of 6 bacterial symbionts in the gill of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445CrossRefPubMed
47.
Zurück zum Zitat Urakawa H, Dubilier N, Fujiwara Y et al (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour ε- and γ-proteobacterial endosymbionts. Environ Microbiol 7:750–754CrossRefPubMed Urakawa H, Dubilier N, Fujiwara Y et al (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour ε- and γ-proteobacterial endosymbionts. Environ Microbiol 7:750–754CrossRefPubMed
48.
Zurück zum Zitat Bates AE, Harmer TL, Roeselers G, Cavanaugh CM (2011) Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (Lepetodrilidae, Vetigastropoda). Biol Bull 220:118–127CrossRefPubMed Bates AE, Harmer TL, Roeselers G, Cavanaugh CM (2011) Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (Lepetodrilidae, Vetigastropoda). Biol Bull 220:118–127CrossRefPubMed
49.
Zurück zum Zitat Cavanaugh CM, Levering PR, Maki JS et al (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–347CrossRef Cavanaugh CM, Levering PR, Maki JS et al (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–347CrossRef
50.
Zurück zum Zitat Fiala-Médioni A, McKiness ZP, Dando P et al (2002) Ultrastructural, biochemical and immunological characterisation of two populations of the Mytilid mussel Bathymodiolus azoricus from the Mid Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043CrossRef Fiala-Médioni A, McKiness ZP, Dando P et al (2002) Ultrastructural, biochemical and immunological characterisation of two populations of the Mytilid mussel Bathymodiolus azoricus from the Mid Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043CrossRef
51.
Zurück zum Zitat Lorion J, Buge B, Cruaud C, Samadi S (2010) New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia). Mol Phyl Evol 57:71–83CrossRef Lorion J, Buge B, Cruaud C, Samadi S (2010) New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia). Mol Phyl Evol 57:71–83CrossRef
52.
Zurück zum Zitat Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalysed reporter deposition for the identification of marine Bacteria. Appl Environ Microbiol 68:3094–3101CrossRefPubMedPubMedCentral Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalysed reporter deposition for the identification of marine Bacteria. Appl Environ Microbiol 68:3094–3101CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926CrossRefPubMed Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926CrossRefPubMed
54.
Zurück zum Zitat Pond DW, Bell MV, Dixon DR et al (1998) Stable-carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl Environ Microbiol 64:370–375PubMedPubMedCentral Pond DW, Bell MV, Dixon DR et al (1998) Stable-carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl Environ Microbiol 64:370–375PubMedPubMedCentral
55.
Zurück zum Zitat Guezi H, Boutet I, Andersen AC et al (2014) Comparative analysis of symbiont ratios and gene expression in natural populations of two Bathymodiolus mussel species. Symbiosis 63:19–29CrossRef Guezi H, Boutet I, Andersen AC et al (2014) Comparative analysis of symbiont ratios and gene expression in natural populations of two Bathymodiolus mussel species. Symbiosis 63:19–29CrossRef
Metadaten
Titel
Characterization of Bacterial Symbionts in Deep-Sea Fauna: Protocols for Sample Conditioning, Fluorescence In Situ Hybridization, and Image Analysis
verfasst von
Sébastien Duperron
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8623_2015_73