Skip to main content
Erschienen in: Journal of Materials Science 18/2016

06.06.2016 | Original Paper

Characterization of maghemite (γ-Fe2O3)-loaded poly-l-lactic acid/thermoplastic polyurethane electrospun mats for soft tissue engineering

verfasst von: Ehsan Fallahiarezoudar, Mohaddeseh Ahmadipourroudposht, Ani Idris, Noordin Mohd Yusof, Mohsen Marvibaigi, Muhammad Irfan

Erschienen in: Journal of Materials Science | Ausgabe 18/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposed a new mixture of three different biocompatible and biodegradable materials for soft tissue which needs elasticity and stretchability as well as stiffness. Five different ratios of poly-l-lactic acid (PLLA)/thermoplastic polyurethane (TPU) blend containing 1 % (w/v) maghemite (γ-Fe2O3) nanoparticles were electrospun and characterized in terms of morphology, degradation rate, biological compatibility, and mechanical properties for tunable properties. Neat PLLA/TPU samples were used for maghemite effect verification. The existence of three components in the electrospun mats was confirmed by Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. Scanning electron microscopy images illustrated well-fabricated nanofibers with smaller diameter distribution for PLLA. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using human skin fibroblast cell indicates desired proliferation and migrant over the samples. Blood biocompatibility results in terms of clotting time, fibrin formation, and hemolysis were almost in the normal range. Samples’ degradation rate was investigated over 24 weeks where the PLLA shows 47.15 % mass change, while 6.7 % of TPU mass changed. High tensile strength and an extremely low elongation at break were determined from the stress–strain curve for PLLA, while TPU exhibits high elasticity. The 50:50 % ratio of 1 % (w/v) maghemite-loaded PLLA/TPU scaffold presents an overall satisfaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Joy J et al (2015) Fabrication of smooth electrospun nanofibrous gelatin mat for potential application in tissue engineering. Int J Polym Mater Polym Biomater 64(10):509–518CrossRef Joy J et al (2015) Fabrication of smooth electrospun nanofibrous gelatin mat for potential application in tissue engineering. Int J Polym Mater Polym Biomater 64(10):509–518CrossRef
3.
Zurück zum Zitat Wu S et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R: Rep 80:1–36CrossRef Wu S et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R: Rep 80:1–36CrossRef
4.
Zurück zum Zitat Hosseinkazemi H et al (2015) Modification of PCL electrospun nanofibrous mat with calendula officinalis extract for improved interaction with cells. Int J Polym Mater Polym Biomater 64(9):459–464CrossRef Hosseinkazemi H et al (2015) Modification of PCL electrospun nanofibrous mat with calendula officinalis extract for improved interaction with cells. Int J Polym Mater Polym Biomater 64(9):459–464CrossRef
5.
Zurück zum Zitat Ahmadipourroudposht M et al (2015) Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater Sci Eng C 50:234–241CrossRef Ahmadipourroudposht M et al (2015) Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater Sci Eng C 50:234–241CrossRef
6.
Zurück zum Zitat Bini T et al (2006) Poly (l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41(19):6453–6459. doi:10.1007/s10853-006-0714-3 CrossRef Bini T et al (2006) Poly (l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41(19):6453–6459. doi:10.​1007/​s10853-006-0714-3 CrossRef
7.
Zurück zum Zitat Jia L et al (2013) Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. J Mater Sci 48(15):5113–5124. doi:10.1007/s10853-013-7359-9 CrossRef Jia L et al (2013) Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. J Mater Sci 48(15):5113–5124. doi:10.​1007/​s10853-013-7359-9 CrossRef
8.
Zurück zum Zitat Fallahiarezoudar E et al (2015) A review of: application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C 48:556–565CrossRef Fallahiarezoudar E et al (2015) A review of: application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C 48:556–565CrossRef
9.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRef
10.
Zurück zum Zitat Mehrasa M et al (2016) Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: the influence on the physical, chemical properties and cell behavior. Int J Polym Mater Polym Biomater 65(9):457–465CrossRef Mehrasa M et al (2016) Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: the influence on the physical, chemical properties and cell behavior. Int J Polym Mater Polym Biomater 65(9):457–465CrossRef
12.
Zurück zum Zitat Qazi TH et al (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521CrossRef Qazi TH et al (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521CrossRef
13.
Zurück zum Zitat Hasan A et al (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25CrossRef Hasan A et al (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25CrossRef
14.
Zurück zum Zitat Costa PF et al (2014) Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 41(3):283–294CrossRef Costa PF et al (2014) Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 41(3):283–294CrossRef
15.
Zurück zum Zitat Koysuren O et al (2014) Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. Int J Polym Mater Polym Biomater 63(7):337–341CrossRef Koysuren O et al (2014) Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. Int J Polym Mater Polym Biomater 63(7):337–341CrossRef
16.
Zurück zum Zitat Yang S et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689CrossRef Yang S et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689CrossRef
17.
Zurück zum Zitat Martin JR et al (2014) A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 35(12):3766–3776CrossRef Martin JR et al (2014) A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 35(12):3766–3776CrossRef
18.
Zurück zum Zitat Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34(12):1799–1819CrossRef Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34(12):1799–1819CrossRef
19.
Zurück zum Zitat Ocal H et al (2014) 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Dev Ind Pharm 40(4):560–567CrossRef Ocal H et al (2014) 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Dev Ind Pharm 40(4):560–567CrossRef
20.
Zurück zum Zitat Fallahiarezoudar E, Ahmadipourroudposht M, Yusof NM (2015) Geometric modeling of aortic heart valve. Proc Manuf 2:135–140 Fallahiarezoudar E, Ahmadipourroudposht M, Yusof NM (2015) Geometric modeling of aortic heart valve. Proc Manuf 2:135–140
21.
Zurück zum Zitat Palacios J et al (2015) Characterization and thermal degradation kinetics of poly (l-lactide) nanocomposites with carbon nanotubes. Polym Eng Sci 55(3):710–718CrossRef Palacios J et al (2015) Characterization and thermal degradation kinetics of poly (l-lactide) nanocomposites with carbon nanotubes. Polym Eng Sci 55(3):710–718CrossRef
22.
Zurück zum Zitat Wei Y et al (2011) Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed Mater 6(5):055008CrossRef Wei Y et al (2011) Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed Mater 6(5):055008CrossRef
23.
Zurück zum Zitat Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22):2215–2231CrossRef Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22):2215–2231CrossRef
24.
Zurück zum Zitat Dixit P et al (2001) Vascular graft endothelialization: comparative analysis of canine and human endothelial cell migration on natural biomaterials. J Biomed Mater Res 56(4):545–555CrossRef Dixit P et al (2001) Vascular graft endothelialization: comparative analysis of canine and human endothelial cell migration on natural biomaterials. J Biomed Mater Res 56(4):545–555CrossRef
25.
Zurück zum Zitat Yoon H, Ahn S, Kim G (2009) Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation. Macromol Rapid Commun 30(19):1632–1637CrossRef Yoon H, Ahn S, Kim G (2009) Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation. Macromol Rapid Commun 30(19):1632–1637CrossRef
26.
Zurück zum Zitat Samouillan V et al (2011) The use of thermal techniques for the characterization and selection of natural biomaterials. J Funct Biomater 2(3):230–248CrossRef Samouillan V et al (2011) The use of thermal techniques for the characterization and selection of natural biomaterials. J Funct Biomater 2(3):230–248CrossRef
27.
Zurück zum Zitat Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRef Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRef
28.
Zurück zum Zitat Pariente J-L, Kim B-S, Atala A (2002) In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol 167(4):1867–1871CrossRef Pariente J-L, Kim B-S, Atala A (2002) In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol 167(4):1867–1871CrossRef
29.
Zurück zum Zitat Bawazer L (2015) Bio focus: synthetic biomaterials advance stem cell engineering. MRS Bull 40(10):792–793CrossRef Bawazer L (2015) Bio focus: synthetic biomaterials advance stem cell engineering. MRS Bull 40(10):792–793CrossRef
30.
Zurück zum Zitat Li Q, Ma L, Gao C (2015) Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 3(46):8921–8938CrossRef Li Q, Ma L, Gao C (2015) Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 3(46):8921–8938CrossRef
31.
Zurück zum Zitat Mi H-Y et al (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33(8):4767–4776CrossRef Mi H-Y et al (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33(8):4767–4776CrossRef
32.
Zurück zum Zitat Rodenas-Rochina J, Vidaurre A, Cortázar IC, Lebourg M (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polymer Degrad Stab 119:121–131CrossRef Rodenas-Rochina J, Vidaurre A, Cortázar IC, Lebourg M (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polymer Degrad Stab 119:121–131CrossRef
33.
Zurück zum Zitat Salehi M et al (2015) Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater 64(13):675–682CrossRef Salehi M et al (2015) Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater 64(13):675–682CrossRef
34.
Zurück zum Zitat Gonçalves F et al (2015) Hybrid membranes of PLLA/collagen for bone tissue engineering: a comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials 8(2):408–423CrossRef Gonçalves F et al (2015) Hybrid membranes of PLLA/collagen for bone tissue engineering: a comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials 8(2):408–423CrossRef
35.
Zurück zum Zitat Raghavendran HRB et al (2016) Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Colloids Surf B 139:68–78CrossRef Raghavendran HRB et al (2016) Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Colloids Surf B 139:68–78CrossRef
36.
Zurück zum Zitat Raja M, Ryu SH, Shanmugharaj A (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites. Eur Polymer J 49(11):3492–3500CrossRef Raja M, Ryu SH, Shanmugharaj A (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites. Eur Polymer J 49(11):3492–3500CrossRef
37.
Zurück zum Zitat Ngadiman NHA et al (2015) γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J Mech Behav Biomed Mater 49:90–104CrossRef Ngadiman NHA et al (2015) γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J Mech Behav Biomed Mater 49:90–104CrossRef
38.
Zurück zum Zitat Fallahiarezoudar E et al (2015) Fabrication (ferrofluid/polyvinyl alcohol) magnetic nanofibers via co-axial electrospinning. J Dispers Sci Technol 36(1):28–31CrossRef Fallahiarezoudar E et al (2015) Fabrication (ferrofluid/polyvinyl alcohol) magnetic nanofibers via co-axial electrospinning. J Dispers Sci Technol 36(1):28–31CrossRef
39.
Zurück zum Zitat Fallahiarezoudar E et al (2015) Influence of process factors on diameter of core (γ-Fe2O3)/shell (polyvinyl alcohol) structure magnetic nanofibers during co-axial electrospinning. Int J Polym Mater Polym Biomater 64(1):15–24CrossRef Fallahiarezoudar E et al (2015) Influence of process factors on diameter of core (γ-Fe2O3)/shell (polyvinyl alcohol) structure magnetic nanofibers during co-axial electrospinning. Int J Polym Mater Polym Biomater 64(1):15–24CrossRef
40.
Zurück zum Zitat Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5(8):2884–2893CrossRef Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5(8):2884–2893CrossRef
41.
Zurück zum Zitat Amarjargal A et al (2013) Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: a novel heat-generating substrate for magnetic hyperthermia application. Eur Polymer J 49(12):3796–3805CrossRef Amarjargal A et al (2013) Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: a novel heat-generating substrate for magnetic hyperthermia application. Eur Polymer J 49(12):3796–3805CrossRef
42.
Zurück zum Zitat Arrieta M et al (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24CrossRef Arrieta M et al (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24CrossRef
43.
Zurück zum Zitat Haroosh HJ, Dong Y (2015) Electrospun poly (lactic acid)(PLA): poly (ε-caprolactone)(PCL)/halloysite nanotube (HNT) composite fibers: synthesis and characterization. In: Fillers and reinforcements for advanced nanocomposites, p 59 Haroosh HJ, Dong Y (2015) Electrospun poly (lactic acid)(PLA): poly (ε-caprolactone)(PCL)/halloysite nanotube (HNT) composite fibers: synthesis and characterization. In: Fillers and reinforcements for advanced nanocomposites, p 59
44.
Zurück zum Zitat Idris A et al (2010) Photocatalytic magnetic separable beads for chromium (VI) reduction. Water Res 44(6):1683–1688CrossRef Idris A et al (2010) Photocatalytic magnetic separable beads for chromium (VI) reduction. Water Res 44(6):1683–1688CrossRef
45.
Zurück zum Zitat Kang Y et al (2009) A study on the in vitro degradation properties of poly (l-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) scaffold under dynamic loading. Med Eng Phys 31(5):589–594CrossRef Kang Y et al (2009) A study on the in vitro degradation properties of poly (l-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) scaffold under dynamic loading. Med Eng Phys 31(5):589–594CrossRef
46.
Zurück zum Zitat Chan K-C, Yin M-C, Chao W-J (2007) Effect of diallyl trisulfide-rich garlic oil on blood coagulation and plasma activity of anticoagulation factors in rats. Food Chem Toxicol 45(3):502–507CrossRef Chan K-C, Yin M-C, Chao W-J (2007) Effect of diallyl trisulfide-rich garlic oil on blood coagulation and plasma activity of anticoagulation factors in rats. Food Chem Toxicol 45(3):502–507CrossRef
47.
Zurück zum Zitat Deng Y et al (2015) effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int J Nanomed 10:1425 Deng Y et al (2015) effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int J Nanomed 10:1425
48.
Zurück zum Zitat Ponsonnet L et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23(4):551–560CrossRef Ponsonnet L et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23(4):551–560CrossRef
49.
Zurück zum Zitat Deligianni DD et al (2000) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRef Deligianni DD et al (2000) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRef
50.
Zurück zum Zitat Zhang P et al (2015) Water-permeable polylactide blend membranes for hydrophilicity-based separation. Chem Eng J 269:180–185CrossRef Zhang P et al (2015) Water-permeable polylactide blend membranes for hydrophilicity-based separation. Chem Eng J 269:180–185CrossRef
51.
Zurück zum Zitat Pratsinis SE, Vemury S (1996) Particle formation in gases: a review. Powder Technol 88(3):267–273CrossRef Pratsinis SE, Vemury S (1996) Particle formation in gases: a review. Powder Technol 88(3):267–273CrossRef
52.
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef
53.
Zurück zum Zitat Klabunde KJ, Richards R (2009) Nanoscale materials in chemistry. Wiley, New YorkCrossRef Klabunde KJ, Richards R (2009) Nanoscale materials in chemistry. Wiley, New YorkCrossRef
Metadaten
Titel
Characterization of maghemite (γ-Fe2O3)-loaded poly-l-lactic acid/thermoplastic polyurethane electrospun mats for soft tissue engineering
verfasst von
Ehsan Fallahiarezoudar
Mohaddeseh Ahmadipourroudposht
Ani Idris
Noordin Mohd Yusof
Mohsen Marvibaigi
Muhammad Irfan
Publikationsdatum
06.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0087-1

Weitere Artikel der Ausgabe 18/2016

Journal of Materials Science 18/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.