Skip to main content

2015 | OriginalPaper | Buchkapitel

Characterizing Synthetic Biology Through Its Novel and Enhanced Functionalities

verfasst von : Christian Pade, Bernd Giese, Stefan Koenigstein, Henning Wigger, Arnim von Gleich

Erschienen in: Synthetic Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

What distinguishes synthetic biology from earlier approaches in biology and biotechnology? What are future applications that may possibly be realized through synthetic biology? What can be expected from synthetic biology with respect to the benefits it may provide as well as the risks it may pose? This chapter puts forward the idea that these questions, among others that regard the promises and threats of this new and emerging field of science and technology, can be explored by applying the concept of functionality to synthetic-biological structures and systems. Functionality, in this respect, is defined as a certain physicochemical or biological effect that can be brought about by a (synthetic-) biological object. This effect, in turn, has repercussions on the wider systems context the respective object appears in. Looking at the various hierarchical levels of biological life, functionalities that have already been realized through synthetic-biological approaches, as well as those that may be realized through future research and development, are systematically analyzed. Based on this analysis, applications that make use of these functionalities thus far, or may do so in the future, are presented. Furthermore, it is investigated how the functionalities may change the hazardous properties or exposure behavior of the respective structures or systems and thus potentially increase the risk associated with them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
A similar categorization into five “levels of complexity” is suggested by GR et al. (2008).
 
2
For reasons of better readability and cross-reference, functionalities are set in small capitals preceded by an arrow (“→”). All functionalities discussed in this chapter are also summarized in Table 1.
 
Literatur
Zurück zum Zitat Ajo-Franklin, C. M., Drubin, D. A., Eskin, J. A., Gee, E. P., Landgraf, D., Phillips, I., et al. (2007). Rational design of memory in eukaryotic cells. Genes and Development, 21(18), 2271–2276. doi:10.1101/gad.1586107.CrossRef Ajo-Franklin, C. M., Drubin, D. A., Eskin, J. A., Gee, E. P., Landgraf, D., Phillips, I., et al. (2007). Rational design of memory in eukaryotic cells. Genes and Development, 21(18), 2271–2276. doi:10.​1101/​gad.​1586107.CrossRef
Zurück zum Zitat Amidi, M., de Raad, M., de Graauw, H., van Ditmarsch, D., Hennink, W. E., Crommelin, D. J., et al. (2010). Optimization and quantification of protein synthesis inside liposomes. Journal of Liposome Research, 20(1), 73–83. doi:10.3109/08982100903402954.CrossRef Amidi, M., de Raad, M., de Graauw, H., van Ditmarsch, D., Hennink, W. E., Crommelin, D. J., et al. (2010). Optimization and quantification of protein synthesis inside liposomes. Journal of Liposome Research, 20(1), 73–83. doi:10.​3109/​0898210090340295​4.CrossRef
Zurück zum Zitat Anemaet, I. G., Bekker, M., & Hellingwerf, K. J. (2010). Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Marine Biotechnology, 12(6), 619–629. doi:10.1007/s10126-010-9311-1.CrossRef Anemaet, I. G., Bekker, M., & Hellingwerf, K. J. (2010). Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Marine Biotechnology, 12(6), 619–629. doi:10.​1007/​s10126-010-9311-1.CrossRef
Zurück zum Zitat Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434(7037), 1130–1134. doi:10.1038/nature03461.CrossRef Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434(7037), 1130–1134. doi:10.​1038/​nature03461.CrossRef
Zurück zum Zitat Basu, S., Mehreja, R., Thiberge, S., Chen, M. T., & Weiss, R. (2004). Spatiotemporal control of gene expression with pulse-generating networks. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6355–6360. doi:10.1073/pnas.0307571101.CrossRef Basu, S., Mehreja, R., Thiberge, S., Chen, M. T., & Weiss, R. (2004). Spatiotemporal control of gene expression with pulse-generating networks. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6355–6360. doi:10.​1073/​pnas.​0307571101.CrossRef
Zurück zum Zitat Behrens, G. A., Hummel, A., Padhi, S. K., Schatzle, S., & Bornscheuer, U. T. (2011). Discovery and protein engineering of biocatalysts for organic synthesis. Advanced Synthesis and Catalysis, 353(13), 2191–2215. doi:10.1002/adsc.201100446.CrossRef Behrens, G. A., Hummel, A., Padhi, S. K., Schatzle, S., & Bornscheuer, U. T. (2011). Discovery and protein engineering of biocatalysts for organic synthesis. Advanced Synthesis and Catalysis, 353(13), 2191–2215. doi:10.​1002/​adsc.​201100446.CrossRef
Zurück zum Zitat Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., et al. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332(6031), 805–809. doi:10.1126/science.1200165.CrossRef Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., et al. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332(6031), 805–809. doi:10.​1126/​science.​1200165.CrossRef
Zurück zum Zitat Brilli, M., Fani, R., & Lio, P. (2008). Current trends in the bioinformatic sequence analysis of metabolic pathways in prokaryotes. Briefings in Bioinformatics, 9(1), 34–45. doi:10.1093/bib/bbm051.CrossRef Brilli, M., Fani, R., & Lio, P. (2008). Current trends in the bioinformatic sequence analysis of metabolic pathways in prokaryotes. Briefings in Bioinformatics, 9(1), 34–45. doi:10.​1093/​bib/​bbm051.CrossRef
Zurück zum Zitat Bromley, E. H., Channon, K., Moutevelis, E., & Woolfson, D. N. (2008). Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organized biomolecular systems. ACS Chemical Biology, 3(1), 38–50. doi:10.1021/cb700249v.CrossRef Bromley, E. H., Channon, K., Moutevelis, E., & Woolfson, D. N. (2008). Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organized biomolecular systems. ACS Chemical Biology, 3(1), 38–50. doi:10.​1021/​cb700249v.CrossRef
Zurück zum Zitat Brunk, E., Neri, M., Tavernelli, I., Hatzimanikatis, V., & Rothlisberger, U. (2012). Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnology and Bioengineering, 109(2), 572–582. doi:10.1002/bit.23334.CrossRef Brunk, E., Neri, M., Tavernelli, I., Hatzimanikatis, V., & Rothlisberger, U. (2012). Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnology and Bioengineering, 109(2), 572–582. doi:10.​1002/​bit.​23334.CrossRef
Zurück zum Zitat Cachat, E., & Davies, J. A. (2011). Application of synthetic biology to regenerative medicine. Journal of Bioengineering and Biomedical Sciences, 01(S2), doi:10.4172/2155-9538.s2-003. Cachat, E., & Davies, J. A. (2011). Application of synthetic biology to regenerative medicine. Journal of Bioengineering and Biomedical Sciences, 01(S2), doi:10.​4172/​2155-9538.​s2-003.
Zurück zum Zitat Clomburg, J. M., & Gonzalez, R. (2010). Biofuel production in escherichia coli: The role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 86(2), 419–434. doi:10.1007/s00253-010-2446-1.CrossRef Clomburg, J. M., & Gonzalez, R. (2010). Biofuel production in escherichia coli: The role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 86(2), 419–434. doi:10.​1007/​s00253-010-2446-1.CrossRef
Zurück zum Zitat Collins, M. L., Irvine, B., Tyner, D., Fine, E., Zayati, C., Chang, C., et al. (1997). A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Research, 25(15), 2979–2984. doi:10.1093/nar/25.15.2979.CrossRef Collins, M. L., Irvine, B., Tyner, D., Fine, E., Zayati, C., Chang, C., et al. (1997). A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Research, 25(15), 2979–2984. doi:10.​1093/​nar/​25.​15.​2979.CrossRef
Zurück zum Zitat Dellomonaco, C., Fava, F., & Gonzalez, R. (2010). The path to next generation biofuels: Successes and challenges in the era of synthetic biology. Microbial Cell Factories, 9(3), 1–15. doi:10.1186/1475-2859-9-3. Dellomonaco, C., Fava, F., & Gonzalez, R. (2010). The path to next generation biofuels: Successes and challenges in the era of synthetic biology. Microbial Cell Factories, 9(3), 1–15. doi:10.​1186/​1475-2859-9-3.
Zurück zum Zitat Dethoff, E. A., Chugh, J., Mustoe, A. M., & Al-Hashimi, H. M. (2012). Functional complexity and regulation through RNA dynamics. Nature, 482, 322–330. doi:10.1038/nature10885.CrossRef Dethoff, E. A., Chugh, J., Mustoe, A. M., & Al-Hashimi, H. M. (2012). Functional complexity and regulation through RNA dynamics. Nature, 482, 322–330. doi:10.​1038/​nature10885.CrossRef
Zurück zum Zitat Ellis, T., Wang, X., & Collins, J. J. (2009). Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 27(5), 465–471. doi:10.1038/nbt.1536.CrossRef Ellis, T., Wang, X., & Collins, J. J. (2009). Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 27(5), 465–471. doi:10.​1038/​nbt.​1536.CrossRef
Zurück zum Zitat Erickson, B., Nelson, J. E. & Winters, P. (2012). Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnology Journal, 7(2), 176–185, doi:10.1002/biot.201100069. Erickson, B., Nelson, J. E. & Winters, P. (2012). Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnology Journal, 7(2), 176–185, doi:10.​1002/​biot.​201100069.
Zurück zum Zitat Feher, T., Papp, B., Pal, C., & Posfai, G. (2007). Systematic genome reductions: Theoretical and experimental approaches. Chemical Reviews, 107(8), 3498–3513. doi:10.1021/cr0683111.CrossRef Feher, T., Papp, B., Pal, C., & Posfai, G. (2007). Systematic genome reductions: Theoretical and experimental approaches. Chemical Reviews, 107(8), 3498–3513. doi:10.​1021/​cr0683111.CrossRef
Zurück zum Zitat Forster, A. C., & Church, G. M. (2006). Towards synthesis of a minimal cell. Molecular Systems Biology, 2, Article number: 45, 45, doi:10.1038/msb4100090. Forster, A. C., & Church, G. M. (2006). Towards synthesis of a minimal cell. Molecular Systems Biology, 2, Article number: 45, 45, doi:10.​1038/​msb4100090.
Zurück zum Zitat Fritz, G., Buchler, N. E., Hwa, T., & Gerland, U. (2007). Designing sequential transcription logic: A simple genetic circuit for conditional memory. Systems and Synthetic Biology, 1(2), 89–98. doi:10.1007/s11693-007-9006-8.CrossRef Fritz, G., Buchler, N. E., Hwa, T., & Gerland, U. (2007). Designing sequential transcription logic: A simple genetic circuit for conditional memory. Systems and Synthetic Biology, 1(2), 89–98. doi:10.​1007/​s11693-007-9006-8.CrossRef
Zurück zum Zitat Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342. doi:10.1038/35002131.CrossRef Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342. doi:10.​1038/​35002131.CrossRef
Zurück zum Zitat Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56. doi:10.1126/science.1190719.CrossRef Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56. doi:10.​1126/​science.​1190719.CrossRef
Zurück zum Zitat Giese, B., Koenigstein, S., Wigger, H., Schmidt, J. C., & Gleich, A. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333. doi:10.1007/s13752-013-0130-2.CrossRef Giese, B., Koenigstein, S., Wigger, H., Schmidt, J. C., & Gleich, A. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333. doi:10.​1007/​s13752-013-0130-2.CrossRef
Zurück zum Zitat Giese, B., & von Gleich, A. (2015). Hazards, risks, and low hazard development paths of synthetic biology. In B. Giese, C. Pade, H. Wigger, & A. von Gleich (Eds.), Synthetic biology : Character and impact (pp. 173–195). Berlin: Springer. Giese, B., & von Gleich, A. (2015). Hazards, risks, and low hazard development paths of synthetic biology. In B. Giese, C. Pade, H. Wigger, & A. von Gleich (Eds.), Synthetic biology : Character and impact (pp. 173–195). Berlin: Springer.
Zurück zum Zitat Guido, N. J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C. R., et al. (2006). A bottom-up approach to gene regulation. Nature, 439(7078), 856–860. doi:10.1038/nature04473.CrossRef Guido, N. J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C. R., et al. (2006). A bottom-up approach to gene regulation. Nature, 439(7078), 856–860. doi:10.​1038/​nature04473.CrossRef
Zurück zum Zitat Herdewijn, P., & Marliere, P. (2009). Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chemistry and Biodiversity, 6(6), 791–808. doi:10.1002/cbdv.200900083.CrossRef Herdewijn, P., & Marliere, P. (2009). Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chemistry and Biodiversity, 6(6), 791–808. doi:10.​1002/​cbdv.​200900083.CrossRef
Zurück zum Zitat Hoesl, M. G., & Budisa, N. (2011). In vivo incorporation of multiple noncanonical amino acids into proteins. Angewandte Chemie International Edition, 50(13), 2896–2902. doi:10.1002/anie.201005680.CrossRef Hoesl, M. G., & Budisa, N. (2011). In vivo incorporation of multiple noncanonical amino acids into proteins. Angewandte Chemie International Edition, 50(13), 2896–2902. doi:10.​1002/​anie.​201005680.CrossRef
Zurück zum Zitat Jang, Y. S., Park, J. M., Choi, S., Choi, Y. J., Seung do, Y., Cho, J. H, et al. (2012). Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnology Advances, 30(5), 989–1000, doi:10.1016/j.biotechadv.2011.08.015. Jang, Y. S., Park, J. M., Choi, S., Choi, Y. J., Seung do, Y., Cho, J. H, et al. (2012). Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnology Advances, 30(5), 989–1000, doi:10.​1016/​j.​biotechadv.​2011.​08.​015.
Zurück zum Zitat Jung, S. K., Parisutham, V., Jeong, S. H. & Lee, S. K. (2012). Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. Journal of Biomedicine and Biotechnology, 2012, Article number: 405842, 405842, doi:10.1155/2012/405842. Jung, S. K., Parisutham, V., Jeong, S. H. & Lee, S. K. (2012). Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. Journal of Biomedicine and Biotechnology, 2012, Article number: 405842, 405842, doi:10.​1155/​2012/​405842.
Zurück zum Zitat King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., Andre, I., et al. (2012). Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science, 336(6085), 1171–1174. doi:10.1126/science.1219364.CrossRef King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., Andre, I., et al. (2012). Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science, 336(6085), 1171–1174. doi:10.​1126/​science.​1219364.CrossRef
Zurück zum Zitat Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R., et al. (2004). Programmable cells: Interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8414–8419. doi:10.1073/pnas.0402940101.CrossRef Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R., et al. (2004). Programmable cells: Interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8414–8419. doi:10.​1073/​pnas.​0402940101.CrossRef
Zurück zum Zitat Lamsen, E. N., & Atsumi, S. (2012). Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Frontiers in microbiology, 3, 196.CrossRef Lamsen, E. N., & Atsumi, S. (2012). Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Frontiers in microbiology, 3, 196.CrossRef
Zurück zum Zitat Lepthien, S., Merkel, L., & Budisa, N. (2010). In vivo double and triple labeling of proteins using synthetic amino acids. Angewandte Chemie International Edition, 49(32), 5446–5450. doi:10.1002/anie.201000439.CrossRef Lepthien, S., Merkel, L., & Budisa, N. (2010). In vivo double and triple labeling of proteins using synthetic amino acids. Angewandte Chemie International Edition, 49(32), 5446–5450. doi:10.​1002/​anie.​201000439.CrossRef
Zurück zum Zitat Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634. doi:10.1073/Pnas.0800442106.CrossRef Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634. doi:10.​1073/​Pnas.​0800442106.CrossRef
Zurück zum Zitat Magnus, C. J., Lee, P. H., Atasoy, D., Su, H. H., Looger, L. L., & Sternson, S. M. (2011). Chemical and genetic engineering of selective ion channel-ligand interactions. Science, 333(6047), 1292–1296. doi:10.1126/science.1206606.CrossRef Magnus, C. J., Lee, P. H., Atasoy, D., Su, H. H., Looger, L. L., & Sternson, S. M. (2011). Chemical and genetic engineering of selective ion channel-ligand interactions. Science, 333(6047), 1292–1296. doi:10.​1126/​science.​1206606.CrossRef
Zurück zum Zitat Magnuson, A., Anderlund, M., Johansson, O., Lindblad, P., Lomoth, R., Polivka, T., et al. (2009). Biomimetic and microbial approaches to solar fuel generation. Accounts of Chemical Research, 42(12), 1899–1909. doi:10.1021/ar900127h.CrossRef Magnuson, A., Anderlund, M., Johansson, O., Lindblad, P., Lomoth, R., Polivka, T., et al. (2009). Biomimetic and microbial approaches to solar fuel generation. Accounts of Chemical Research, 42(12), 1899–1909. doi:10.​1021/​ar900127h.CrossRef
Zurück zum Zitat Noireaux, V., Maeda, Y. T., & Libchaber, A. (2011). Development of an artificial cell, from self-organization to computation and self-reproduction. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3473–3480. doi:10.1073/pnas.1017075108.CrossRef Noireaux, V., Maeda, Y. T., & Libchaber, A. (2011). Development of an artificial cell, from self-organization to computation and self-reproduction. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3473–3480. doi:10.​1073/​pnas.​1017075108.CrossRef
Zurück zum Zitat Nourian, Z., Roelofsen, W., & Danelon, C. (2012). Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte Chemie International Edition, 51(13), 3114–3118. doi:10.1002/Anie.201107123.CrossRef Nourian, Z., Roelofsen, W., & Danelon, C. (2012). Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte Chemie International Edition, 51(13), 3114–3118. doi:10.​1002/​Anie.​201107123.CrossRef
Zurück zum Zitat Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320–328. doi:10.1038/nature11478.CrossRef Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320–328. doi:10.​1038/​nature11478.CrossRef
Zurück zum Zitat Porcar, M., Danchin, A., de Lorenzo, V., Dos Santos, V. A., Krasnogor, N., Rasmussen, S., et al. (2011). The ten grand challenges of synthetic life. Systems and Synthetic Biology, 5(1–2), 1–9. doi:10.1007/s11693-011-9084-5.CrossRef Porcar, M., Danchin, A., de Lorenzo, V., Dos Santos, V. A., Krasnogor, N., Rasmussen, S., et al. (2011). The ten grand challenges of synthetic life. Systems and Synthetic Biology, 5(1–2), 1–9. doi:10.​1007/​s11693-011-9084-5.CrossRef
Zurück zum Zitat Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: From modules to systems. Nature Reviews Molecular Cell Biology, 10(6), 410–422. doi:10.1038/nrm2698.CrossRef Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: From modules to systems. Nature Reviews Molecular Cell Biology, 10(6), 410–422. doi:10.​1038/​nrm2698.CrossRef
Zurück zum Zitat Richmond, D. L., Schmid, E. M., Martens, S., Stachowiak, J. C., Liska, N., & Fletcher, D. A. (2011). Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proceedings of the National Academy of Sciences of the United States of America, 108(23), 9431–9436. doi:10.1073/pnas.1016410108.CrossRef Richmond, D. L., Schmid, E. M., Martens, S., Stachowiak, J. C., Liska, N., & Fletcher, D. A. (2011). Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proceedings of the National Academy of Sciences of the United States of America, 108(23), 9431–9436. doi:10.​1073/​pnas.​1016410108.CrossRef
Zurück zum Zitat Sohka, T., Heins, R. A., Phelan, R. M., Greisler, J. M., Townsend, C. A., & Ostermeier, M. (2009). An externally tunable bacterial band-pass filter. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10135–10140. doi:10.1073/pnas.0901246106.CrossRef Sohka, T., Heins, R. A., Phelan, R. M., Greisler, J. M., Townsend, C. A., & Ostermeier, M. (2009). An externally tunable bacterial band-pass filter. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10135–10140. doi:10.​1073/​pnas.​0901246106.CrossRef
Zurück zum Zitat Sole, R. V., Munteanu, A., Rodriguez-Caso, C., & Macia, J. (2007). Synthetic protocell biology: From reproduction to computation. Philosophical Transactions of the Royal Society of London, Series B—Biological Sciences, 362(1486), 1727–1739. doi:10.1098/rstb.2007.2065. Sole, R. V., Munteanu, A., Rodriguez-Caso, C., & Macia, J. (2007). Synthetic protocell biology: From reproduction to computation. Philosophical Transactions of the Royal Society of London, Series B—Biological Sciences, 362(1486), 1727–1739. doi:10.​1098/​rstb.​2007.​2065.
Zurück zum Zitat Szostak, J. W., Bartel, D. P., & Luisi, P. L. (2001). Synthesizing life. Nature, 409(6818), 387–390.CrossRef Szostak, J. W., Bartel, D. P., & Luisi, P. L. (2001). Synthesizing life. Nature, 409(6818), 387–390.CrossRef
Zurück zum Zitat Uchida, M., Klem, M. T., Allen, M., Suci, P., Flenniken, M., Gillitzer, E., et al. (2007). Biological containers: Protein cages as multifunctional nanoplatforms. Advanced Materials, 19(8), 1025–1042. doi:10.1002/adma.200601168.CrossRef Uchida, M., Klem, M. T., Allen, M., Suci, P., Flenniken, M., Gillitzer, E., et al. (2007). Biological containers: Protein cages as multifunctional nanoplatforms. Advanced Materials, 19(8), 1025–1042. doi:10.​1002/​adma.​200601168.CrossRef
Zurück zum Zitat Van der Sloot, A. M., Kiel, C., Serrano, L., & Stricher, F. (2009). Protein design in biological networks: From manipulating the input to modifying the output. Protein Engineering, Design and Selection, 22(9), 537–542. doi:10.1093/protein/gzp032.CrossRef Van der Sloot, A. M., Kiel, C., Serrano, L., & Stricher, F. (2009). Protein design in biological networks: From manipulating the input to modifying the output. Protein Engineering, Design and Selection, 22(9), 537–542. doi:10.​1093/​protein/​gzp032.CrossRef
Zurück zum Zitat Weber, W., Luzi, S., Karlsson, M., Sanchez-Bustamante, C. D., Frey, U., Hierlemann, A., et al. (2009). A synthetic mammalian electro-genetic transcription circuit. Nucleic Acids Research, 37(4), e33. doi:10.1093/nar/gkp014.CrossRef Weber, W., Luzi, S., Karlsson, M., Sanchez-Bustamante, C. D., Frey, U., Hierlemann, A., et al. (2009). A synthetic mammalian electro-genetic transcription circuit. Nucleic Acids Research, 37(4), e33. doi:10.​1093/​nar/​gkp014.CrossRef
Zurück zum Zitat Weber, W., Schoenmakers, R., Keller, B., Gitzinger, M., Grau, T., Daoud-El Baba, M., et al. (2008). A synthetic mammalian gene circuit reveals antituberculosis compounds. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9994–9998. doi:10.1073/pnas.0800663105.CrossRef Weber, W., Schoenmakers, R., Keller, B., Gitzinger, M., Grau, T., Daoud-El Baba, M., et al. (2008). A synthetic mammalian gene circuit reveals antituberculosis compounds. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9994–9998. doi:10.​1073/​pnas.​0800663105.CrossRef
Zurück zum Zitat Weber, W., Stelling, J., Rimann, M., Keller, B., Daoud-El Baba, M., Weber, C. C., et al. (2007). A synthetic time-delay circuit in mammalian cells and mice. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2643–2648. doi:10.1073/pnas.0606398104.CrossRef Weber, W., Stelling, J., Rimann, M., Keller, B., Daoud-El Baba, M., Weber, C. C., et al. (2007). A synthetic time-delay circuit in mammalian cells and mice. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2643–2648. doi:10.​1073/​pnas.​0606398104.CrossRef
Zurück zum Zitat Widmaier, D. M., Tullman-Ercek, D., Mirsky, E. A., Hill, R., Govindarajan, S., Minshull, J, et al. (2009). Engineering the Salmonella type III secretion system to export spider silk monomers. Molecular Systems Biology, 5, Article number: 309, 309, doi:10.1038/msb.2009.62. Widmaier, D. M., Tullman-Ercek, D., Mirsky, E. A., Hill, R., Govindarajan, S., Minshull, J, et al. (2009). Engineering the Salmonella type III secretion system to export spider silk monomers. Molecular Systems Biology, 5, Article number: 309, 309, doi:10.​1038/​msb.​2009.​62.
Zurück zum Zitat Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333(6047), 1307–1311. doi:10.1126/science.1205527.CrossRef Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., & Benenson, Y. (2011). Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333(6047), 1307–1311. doi:10.​1126/​science.​1205527.CrossRef
Zurück zum Zitat You, C., Zhang, X. Z., Sathitsuksanoh, N., Lynd, L. R., & Zhang, Y. H. (2012). Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Applied and Environmental Microbiology, 78(5), 1437–1444. doi:10.1128/aem.07138-11.CrossRef You, C., Zhang, X. Z., Sathitsuksanoh, N., Lynd, L. R., & Zhang, Y. H. (2012). Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Applied and Environmental Microbiology, 78(5), 1437–1444. doi:10.​1128/​aem.​07138-11.CrossRef
Metadaten
Titel
Characterizing Synthetic Biology Through Its Novel and Enhanced Functionalities
verfasst von
Christian Pade
Bernd Giese
Stefan Koenigstein
Henning Wigger
Arnim von Gleich
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-02783-8_4

Neuer Inhalt