Skip to main content

2015 | OriginalPaper | Buchkapitel

Chemical and Biological Tools for the Preparation of Modified Histone Proteins

verfasst von : Cecil J. Howard, Ruixuan R. Yu, Miranda L. Gardner, John C. Shimko, Jennifer J. Ottesen

Erschienen in: Protein Ligation and Total Synthesis II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davey CA et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113CrossRef Davey CA et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113CrossRef
2.
Zurück zum Zitat Luger K et al (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260CrossRef Luger K et al (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260CrossRef
3.
Zurück zum Zitat Lochmann B, Ivanov D (2012) Histone H3 localizes to the centromeric DNA in budding yeast. PLoS Geneti 8:e1002739 Lochmann B, Ivanov D (2012) Histone H3 localizes to the centromeric DNA in budding yeast. PLoS Geneti 8:e1002739
4.
Zurück zum Zitat Redon C et al (2002) Histone H2A variant H2AX and H2AZ. Curr Opin Genet Dev 12:162–169CrossRef Redon C et al (2002) Histone H2A variant H2AX and H2AZ. Curr Opin Genet Dev 12:162–169CrossRef
5.
Zurück zum Zitat Ward IM et al (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278:19579–19582CrossRef Ward IM et al (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278:19579–19582CrossRef
6.
Zurück zum Zitat Park YJ et al (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279:24274–24282CrossRef Park YJ et al (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279:24274–24282CrossRef
7.
Zurück zum Zitat Jenuwein T (2001) Translating the histone code. Science 293:1074–1080CrossRef Jenuwein T (2001) Translating the histone code. Science 293:1074–1080CrossRef
8.
Zurück zum Zitat Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45CrossRef Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45CrossRef
9.
Zurück zum Zitat Schwammle V et al (2014) Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk. Mol Cell Proteomics 13:1855–1865CrossRef Schwammle V et al (2014) Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk. Mol Cell Proteomics 13:1855–1865CrossRef
10.
Zurück zum Zitat Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol 512:3–28 Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol 512:3–28
11.
Zurück zum Zitat Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028CrossRef Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028CrossRef
12.
Zurück zum Zitat Singh MP, Wijeratne SSK, Zempleni J (2013) Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Arch Biochem Biophys 529:105–111CrossRef Singh MP, Wijeratne SSK, Zempleni J (2013) Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Arch Biochem Biophys 529:105–111CrossRef
13.
Zurück zum Zitat Dhall A et al (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem 289:33827–33837CrossRef Dhall A et al (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem 289:33827–33837CrossRef
14.
Zurück zum Zitat Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107:19915–19920CrossRef Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107:19915–19920CrossRef
15.
Zurück zum Zitat Fierz B, Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8:417–427CrossRef Fierz B, Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8:417–427CrossRef
16.
Zurück zum Zitat Pick H, Kilic S, Fierz B (2014) Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839:644–656CrossRef Pick H, Kilic S, Fierz B (2014) Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839:644–656CrossRef
17.
Zurück zum Zitat Fierz B (2014) Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 9:495–504CrossRef Fierz B (2014) Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 9:495–504CrossRef
18.
Zurück zum Zitat Frederiks F et al (2011) A modified epigenetics toolbox to study histone modifications on the nucleosome core. ChemBioChem 12:308–313CrossRef Frederiks F et al (2011) A modified epigenetics toolbox to study histone modifications on the nucleosome core. ChemBioChem 12:308–313CrossRef
19.
Zurück zum Zitat Matsubara K et al (2007) Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12:13–33CrossRef Matsubara K et al (2007) Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12:13–33CrossRef
20.
Zurück zum Zitat Hyland EM et al (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070CrossRef Hyland EM et al (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070CrossRef
21.
Zurück zum Zitat Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:1–19 Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:1–19
22.
Zurück zum Zitat Watanabe S et al (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799:480–486CrossRef Watanabe S et al (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799:480–486CrossRef
23.
Zurück zum Zitat Muthurajan UM et al (2004) Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO 23:260–270CrossRef Muthurajan UM et al (2004) Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO 23:260–270CrossRef
24.
Zurück zum Zitat Iwasaki W et al (2011) Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50:7822–7832CrossRef Iwasaki W et al (2011) Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50:7822–7832CrossRef
25.
Zurück zum Zitat Yu Q et al (2011) Differential contributions of histone H3 and H4 residues to heterochromatin structure. Genetics 188:291–308CrossRef Yu Q et al (2011) Differential contributions of histone H3 and H4 residues to heterochromatin structure. Genetics 188:291–308CrossRef
26.
Zurück zum Zitat Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236CrossRef Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236CrossRef
27.
Zurück zum Zitat Allahverdi A et al (2010) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39:1680–1691CrossRef Allahverdi A et al (2010) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39:1680–1691CrossRef
28.
Zurück zum Zitat Manohar M et al (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321CrossRef Manohar M et al (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321CrossRef
29.
Zurück zum Zitat North JA et al (2011) Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39:6465–6474CrossRef North JA et al (2011) Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39:6465–6474CrossRef
30.
Zurück zum Zitat North JA et al (2014) Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 42:4922–4933CrossRef North JA et al (2014) Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 42:4922–4933CrossRef
31.
Zurück zum Zitat Shimko JC et al (2011) Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol 408:187–204CrossRef Shimko JC et al (2011) Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol 408:187–204CrossRef
32.
Zurück zum Zitat Neumann H et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163CrossRef Neumann H et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163CrossRef
33.
Zurück zum Zitat Masumoto H et al (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298CrossRef Masumoto H et al (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298CrossRef
34.
Zurück zum Zitat Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRef Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRef
35.
Zurück zum Zitat Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408CrossRef Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408CrossRef
36.
Zurück zum Zitat Hao B et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466CrossRef Hao B et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466CrossRef
37.
Zurück zum Zitat Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825CrossRef Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825CrossRef
38.
Zurück zum Zitat Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20:657–661CrossRef Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20:657–661CrossRef
39.
Zurück zum Zitat Di Cerbo V et al. (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3:e01632 Di Cerbo V et al. (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3:e01632
40.
Zurück zum Zitat Nguyen DP et al (2010) Genetically directing ɛ-N,N-dimethyl-l-lysine in recombinant histones. Chem Biol 17:1072–1076CrossRef Nguyen DP et al (2010) Genetically directing ɛ-N,N-dimethyl-l-lysine in recombinant histones. Chem Biol 17:1072–1076CrossRef
41.
Zurück zum Zitat Wang Y-S et al (2010) A genetically encoded photocaged Nε-methyl-l-lysine. Mol BioSyst 6:1557CrossRef Wang Y-S et al (2010) A genetically encoded photocaged Nε-methyl-l-lysine. Mol BioSyst 6:1557CrossRef
42.
Zurück zum Zitat Xie Z et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107CrossRef Xie Z et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107CrossRef
43.
Zurück zum Zitat Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun 49:379CrossRef Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun 49:379CrossRef
44.
Zurück zum Zitat Kim CH et al (2012) Site-specific incorporation of ε-N-crotonyllysine into histones. Angew Chem Int Ed 51:7246–7249CrossRef Kim CH et al (2012) Site-specific incorporation of ε-N-crotonyllysine into histones. Angew Chem Int Ed 51:7246–7249CrossRef
45.
Zurück zum Zitat Yang R et al (2009) Dual native chemical ligation at lysine. JACS Commun 131:13592–13593CrossRef Yang R et al (2009) Dual native chemical ligation at lysine. JACS Commun 131:13592–13593CrossRef
46.
Zurück zum Zitat Li X et al (2009) A pyrrolysine analogue for site-specific protein ubiquitination. Angew Chem Int Ed 48:9184–9187CrossRef Li X et al (2009) A pyrrolysine analogue for site-specific protein ubiquitination. Angew Chem Int Ed 48:9184–9187CrossRef
47.
Zurück zum Zitat Yang R et al (2014) Native chemical ubiquitination using a genetically incorporated azidonorleucine. Chem Commun 50:7971CrossRef Yang R et al (2014) Native chemical ubiquitination using a genetically incorporated azidonorleucine. Chem Commun 50:7971CrossRef
48.
Zurück zum Zitat Guo J et al (2008) Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed 47:6399–6401CrossRef Guo J et al (2008) Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed 47:6399–6401CrossRef
49.
Zurück zum Zitat Wang ZU et al (2012) A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 51:5232–5234CrossRef Wang ZU et al (2012) A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 51:5232–5234CrossRef
50.
Zurück zum Zitat Chalker JM et al (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2:1666CrossRef Chalker JM et al (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2:1666CrossRef
51.
Zurück zum Zitat Chalker JM et al (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chem Int Ed Engl 51:1835–1839CrossRef Chalker JM et al (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chem Int Ed Engl 51:1835–1839CrossRef
52.
Zurück zum Zitat Sawicka A, Seiser C (2014) Sensing core histone phosphorylation — a matter of perfect timing. Biochim Biophys Acta 1839:711–718CrossRef Sawicka A, Seiser C (2014) Sensing core histone phosphorylation — a matter of perfect timing. Biochim Biophys Acta 1839:711–718CrossRef
53.
Zurück zum Zitat Park HS et al (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–1154CrossRef Park HS et al (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–1154CrossRef
54.
Zurück zum Zitat Lee S et al (2013) A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed 52:5771–5775CrossRef Lee S et al (2013) A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed 52:5771–5775CrossRef
55.
Zurück zum Zitat Chin JW et al (2003) Progress toward an expanded eukaryotic genetic code. Chem Biol 10:511–519CrossRef Chin JW et al (2003) Progress toward an expanded eukaryotic genetic code. Chem Biol 10:511–519CrossRef
56.
Zurück zum Zitat Lajoie MJ et al (2013) Genomically recoded organisms expand biological functions. Science 342:357–360CrossRef Lajoie MJ et al (2013) Genomically recoded organisms expand biological functions. Science 342:357–360CrossRef
57.
Zurück zum Zitat Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–35CrossRef Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3:29–35CrossRef
58.
Zurück zum Zitat Anderson JC et al. (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci 101:7566–7571 Anderson JC et al. (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci 101:7566–7571
59.
Zurück zum Zitat Wang K, Schmied WH, Chin JW (2012) Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed 51:2288–2297CrossRef Wang K, Schmied WH, Chin JW (2012) Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed 51:2288–2297CrossRef
60.
Zurück zum Zitat Riddle DL, Carbon J (1973) Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol 242:230–234CrossRef Riddle DL, Carbon J (1973) Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol 242:230–234CrossRef
61.
Zurück zum Zitat Bowman A et al (2010) Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 38:695–707CrossRef Bowman A et al (2010) Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 38:695–707CrossRef
62.
Zurück zum Zitat Ward R et al (2009) Long distance PELDOR measurements on the histone core particle. J Am Chem Soc 131:1348–1349CrossRef Ward R et al (2009) Long distance PELDOR measurements on the histone core particle. J Am Chem Soc 131:1348–1349CrossRef
63.
Zurück zum Zitat Tims HS, Widom J (2007) Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods (San Diego, Calif.) 41:296–303 Tims HS, Widom J (2007) Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods (San Diego, Calif.) 41:296–303
64.
Zurück zum Zitat Dechassa ML et al (2008) Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol 28:6010–6021CrossRef Dechassa ML et al (2008) Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol 28:6010–6021CrossRef
65.
Zurück zum Zitat Ferreira H et al (2007) Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol Cell Biol 27:4037–4048CrossRef Ferreira H et al (2007) Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol Cell Biol 27:4037–4048CrossRef
66.
Zurück zum Zitat Kurumizaka H et al (2013) Current progress on structural studies of nucleosomes containing histone H3 variants. Curr Opin Struct Biol 23:109–115CrossRef Kurumizaka H et al (2013) Current progress on structural studies of nucleosomes containing histone H3 variants. Curr Opin Struct Biol 23:109–115CrossRef
67.
Zurück zum Zitat Flaus A et al (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci U S A 93:1370–1375CrossRef Flaus A et al (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci U S A 93:1370–1375CrossRef
68.
Zurück zum Zitat Poirier MG et al (2009) Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16:938–944CrossRef Poirier MG et al (2009) Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16:938–944CrossRef
69.
Zurück zum Zitat Simon MD et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012CrossRef Simon MD et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012CrossRef
70.
Zurück zum Zitat Kenyon G, Bruice TW (1977) Novel sulfhydryl reagents. Methods Enzymol 47:407–430CrossRef Kenyon G, Bruice TW (1977) Novel sulfhydryl reagents. Methods Enzymol 47:407–430CrossRef
71.
Zurück zum Zitat Lauberth SM et al (2013) H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152:1021–1036CrossRef Lauberth SM et al (2013) H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152:1021–1036CrossRef
72.
Zurück zum Zitat Lu X et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124CrossRef Lu X et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124CrossRef
73.
Zurück zum Zitat Xu C et al (2008) Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16:1740–1750CrossRef Xu C et al (2008) Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16:1740–1750CrossRef
74.
Zurück zum Zitat Eidahl JO et al (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936CrossRef Eidahl JO et al (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936CrossRef
75.
Zurück zum Zitat Hung T et al (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256CrossRef Hung T et al (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256CrossRef
76.
Zurück zum Zitat Margueron R et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767CrossRef Margueron R et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767CrossRef
77.
Zurück zum Zitat Huang R et al (2010) Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc 132:9986–9987CrossRef Huang R et al (2010) Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc 132:9986–9987CrossRef
78.
Zurück zum Zitat Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573CrossRef Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573CrossRef
79.
Zurück zum Zitat Li F et al (2011) A direct method for site-specific protein acetylation. Angew Chem Int Ed 50:9611–9614CrossRef Li F et al (2011) A direct method for site-specific protein acetylation. Angew Chem Int Ed 50:9611–9614CrossRef
80.
Zurück zum Zitat Le D et al. (2013) Site-Specific and Regiospecific Installation of Methylarginine Analogues into Recombinant Histones and Insights into Effector Protein Binding. J Am Chem Soc 135:2879–2882.CrossRef Le D et al. (2013) Site-Specific and Regiospecific Installation of Methylarginine Analogues into Recombinant Histones and Insights into Effector Protein Binding. J Am Chem Soc 135:2879–2882.CrossRef
81.
Zurück zum Zitat Chatterjee A et al (2010) Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6:267–269CrossRef Chatterjee A et al (2010) Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6:267–269CrossRef
82.
Zurück zum Zitat Whitcomb SJ et al (2012) Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2. J Biol Chem 287:23718–23725CrossRef Whitcomb SJ et al (2012) Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2. J Biol Chem 287:23718–23725CrossRef
83.
Zurück zum Zitat Dawson PE et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779CrossRef Dawson PE et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779CrossRef
84.
Zurück zum Zitat He S et al. (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci 100:12033–12038 He S et al. (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci 100:12033–12038
85.
Zurück zum Zitat Shogren-Knaak MA, Fry CJ, Peterson CL (2003) A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem 278:15744–15748CrossRef Shogren-Knaak MA, Fry CJ, Peterson CL (2003) A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem 278:15744–15748CrossRef
86.
Zurück zum Zitat Fierz B et al (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7:113–119CrossRef Fierz B et al (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7:113–119CrossRef
87.
Zurück zum Zitat Nguyen DP et al (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136:2240–2243CrossRef Nguyen DP et al (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136:2240–2243CrossRef
88.
Zurück zum Zitat Fry CJ, Shogren-Knaak MA, Peterson CL (2004) Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb Symp Quant Biol 69:219–226CrossRef Fry CJ, Shogren-Knaak MA, Peterson CL (2004) Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb Symp Quant Biol 69:219–226CrossRef
89.
Zurück zum Zitat Shogren-Knaak M (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847CrossRef Shogren-Knaak M (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847CrossRef
90.
Zurück zum Zitat Ferreira H, Flaus A, Owen-Hughes T (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374:563–579CrossRef Ferreira H, Flaus A, Owen-Hughes T (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374:563–579CrossRef
91.
Zurück zum Zitat Liu Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 414:749–764CrossRef Liu Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 414:749–764CrossRef
92.
Zurück zum Zitat Chiang KP et al (2009) A semisynthetic strategy to generate phosphorylated and acetylated histone H2B. Chembiochem 10:2182–2187CrossRef Chiang KP et al (2009) A semisynthetic strategy to generate phosphorylated and acetylated histone H2B. Chembiochem 10:2182–2187CrossRef
93.
Zurück zum Zitat Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. PNAS 110:14894–14899CrossRef Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. PNAS 110:14894–14899CrossRef
94.
Zurück zum Zitat Kim J et al (2013) The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 49:1121–1133CrossRef Kim J et al (2013) The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 49:1121–1133CrossRef
95.
Zurück zum Zitat Chen Z, Gryzbowski AT, Ruthenburg AJ (2014) Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks. ChemBioChem 15:2071–2075CrossRef Chen Z, Gryzbowski AT, Ruthenburg AJ (2014) Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks. ChemBioChem 15:2071–2075CrossRef
96.
Zurück zum Zitat Hackeng TM, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10069–10073CrossRef Hackeng TM, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10069–10073CrossRef
97.
Zurück zum Zitat Li S, Shogren-Knaak MA (2008) Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Proc Natl Acad Sci 105:18243–18248 Li S, Shogren-Knaak MA (2008) Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Proc Natl Acad Sci 105:18243–18248
98.
Zurück zum Zitat Fry CJ et al (2006) The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing. Mol Cell Biol 26:9045–9059CrossRef Fry CJ et al (2006) The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing. Mol Cell Biol 26:9045–9059CrossRef
99.
Zurück zum Zitat Zhu Y, van der Donk W (2001) Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations. Org Lett 3:1189–1192CrossRef Zhu Y, van der Donk W (2001) Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations. Org Lett 3:1189–1192CrossRef
100.
Zurück zum Zitat Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252CrossRef Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252CrossRef
101.
Zurück zum Zitat Fierz B et al (2012) Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis. J Am Chem Soc 134:19548–19551CrossRef Fierz B et al (2012) Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis. J Am Chem Soc 134:19548–19551CrossRef
102.
Zurück zum Zitat Wong CTT et al (2014) Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front Chem 2:28 Wong CTT et al (2014) Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front Chem 2:28
103.
Zurück zum Zitat Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810CrossRef Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810CrossRef
104.
Zurück zum Zitat Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. JACS Commun 129:10064–10065CrossRef Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. JACS Commun 129:10064–10065CrossRef
105.
Zurück zum Zitat Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34:2653–2662CrossRef Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34:2653–2662CrossRef
106.
Zurück zum Zitat Jack AM, Hake S (2014) Getting down to the core of histone modifications. Chromosoma 123:355–371CrossRef Jack AM, Hake S (2014) Getting down to the core of histone modifications. Chromosoma 123:355–371CrossRef
107.
Zurück zum Zitat Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289:14512–14519CrossRef Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289:14512–14519CrossRef
108.
Zurück zum Zitat Ayers B et al (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Pept Sci 51:343–354CrossRef Ayers B et al (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Pept Sci 51:343–354CrossRef
109.
Zurück zum Zitat McGinty RK et al (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816CrossRef McGinty RK et al (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816CrossRef
110.
Zurück zum Zitat Shimko JC et al. (2013) Preparing semisynthetic and fully synthetic histones H3 and H4 to modify the nucleosome core. Methods Mol Biol 981:177–192 Shimko JC et al. (2013) Preparing semisynthetic and fully synthetic histones H3 and H4 to modify the nucleosome core. Methods Mol Biol 981:177–192
111.
Zurück zum Zitat Simon M et al (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108:12711–12716CrossRef Simon M et al (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108:12711–12716CrossRef
112.
Zurück zum Zitat Javaid S et al (2009) Nucleosome remodeling by hMSH2-hMSH6. Mol Cell 36:1086–1094CrossRef Javaid S et al (2009) Nucleosome remodeling by hMSH2-hMSH6. Mol Cell 36:1086–1094CrossRef
113.
Zurück zum Zitat Kruger W et al (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9:2770–2779CrossRef Kruger W et al (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9:2770–2779CrossRef
114.
Zurück zum Zitat Hurd PJ et al (2009) Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284:16675–16683CrossRef Hurd PJ et al (2009) Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284:16675–16683CrossRef
115.
Zurück zum Zitat Ulyanova NP, Schnitzler GR (2005) Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol Cell Biol 25:11156–11170CrossRef Ulyanova NP, Schnitzler GR (2005) Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol Cell Biol 25:11156–11170CrossRef
116.
Zurück zum Zitat Schnitzler GR, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94:17–27CrossRef Schnitzler GR, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94:17–27CrossRef
117.
Zurück zum Zitat McGinty RK et al (2009) Structure–activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of dot1l by ubiquitylated histone H2B. ACS Chem Biol 4:958–968CrossRef McGinty RK et al (2009) Structure–activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of dot1l by ubiquitylated histone H2B. ACS Chem Biol 4:958–968CrossRef
118.
Zurück zum Zitat Nguyen UTT et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 11:834–840CrossRef Nguyen UTT et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 11:834–840CrossRef
119.
Zurück zum Zitat Mahto SK et al (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. ChemBioChem 12:2488–2494CrossRef Mahto SK et al (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. ChemBioChem 12:2488–2494CrossRef
120.
Zurück zum Zitat Fang GM, Wang JX, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed Engl 51:10347–10350CrossRef Fang GM, Wang JX, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed Engl 51:10347–10350CrossRef
121.
Zurück zum Zitat Li J et al (2014) One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org Biomol Chem 12:5435CrossRef Li J et al (2014) One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org Biomol Chem 12:5435CrossRef
122.
Zurück zum Zitat Siman P et al (2013) Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew Chem Int Ed 52:8059–8063CrossRef Siman P et al (2013) Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew Chem Int Ed 52:8059–8063CrossRef
123.
Zurück zum Zitat Jbara M, Seenaiah M, Brik A (2014) Solid phase chemical ligation employing a Rink amide linker for the synthesis of histone H2B protein. Chem Commun 50:12534–12537CrossRef Jbara M, Seenaiah M, Brik A (2014) Solid phase chemical ligation employing a Rink amide linker for the synthesis of histone H2B protein. Chem Commun 50:12534–12537CrossRef
124.
Zurück zum Zitat Linghu C et al (2013) Discovering common combinatorial histone modification patterns in the human genome. Gene 518:171–178CrossRef Linghu C et al (2013) Discovering common combinatorial histone modification patterns in the human genome. Gene 518:171–178CrossRef
125.
Zurück zum Zitat Zheng C, Hayes JJ (2003) Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J Biol Chem 278:24217–24224CrossRef Zheng C, Hayes JJ (2003) Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J Biol Chem 278:24217–24224CrossRef
126.
Zurück zum Zitat Mohberg J, Rusch HP (1969) Isolation of the nuclear histones from the myxomycete, Physarum polycephalum. Arch Biochem Biophys 134:577–589CrossRef Mohberg J, Rusch HP (1969) Isolation of the nuclear histones from the myxomycete, Physarum polycephalum. Arch Biochem Biophys 134:577–589CrossRef
127.
Zurück zum Zitat Thiriet C, Hayes JJ (1999) Histone proteins in vivo: cell-cycle-dependent physiological effects of exogenous linker histones incorporated into Physarum polycephalum. Methods 17:140–150CrossRef Thiriet C, Hayes JJ (1999) Histone proteins in vivo: cell-cycle-dependent physiological effects of exogenous linker histones incorporated into Physarum polycephalum. Methods 17:140–150CrossRef
128.
Zurück zum Zitat Prior CP et al (1980) Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo. Cell 20:597–608CrossRef Prior CP et al (1980) Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo. Cell 20:597–608CrossRef
129.
Zurück zum Zitat Adamatzky A (2013) Slimeware: engineering devices with slime mold. Artificial Life 19:317–330CrossRef Adamatzky A (2013) Slimeware: engineering devices with slime mold. Artificial Life 19:317–330CrossRef
130.
Zurück zum Zitat Taylor B et al (2014) Physarum polycephalum: towards a biological controller. Biosystems 127C:42–46 Taylor B et al (2014) Physarum polycephalum: towards a biological controller. Biosystems 127C:42–46
131.
Zurück zum Zitat Ejlassi-Lassallette A et al (2010) H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 22:245–255CrossRef Ejlassi-Lassallette A et al (2010) H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 22:245–255CrossRef
132.
Zurück zum Zitat Thiriet C, Hayes JJ (2001) A novel labeling technique reveals a function for histone H2A/H2B dimer tail domains in chromatin assembly in vivo. Genes Dev 15:2048–2053CrossRef Thiriet C, Hayes JJ (2001) A novel labeling technique reveals a function for histone H2A/H2B dimer tail domains in chromatin assembly in vivo. Genes Dev 15:2048–2053CrossRef
133.
Zurück zum Zitat Studitsky VM, Clark DJ, Felsenfeld G (1994) A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–382CrossRef Studitsky VM, Clark DJ, Felsenfeld G (1994) A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–382CrossRef
134.
Zurück zum Zitat Kireeva ML et al (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A-H2B dimer during transcription. Mol Cell 9:541–552CrossRef Kireeva ML et al (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A-H2B dimer during transcription. Mol Cell 9:541–552CrossRef
135.
Zurück zum Zitat Nishiyama A et al (2008) Intracellular delivery of acetyl-histone peptides inhibits native bromodomain-chromatin interactions and impairs mitotic progression. FEBS Lett 582:1501–1507CrossRef Nishiyama A et al (2008) Intracellular delivery of acetyl-histone peptides inhibits native bromodomain-chromatin interactions and impairs mitotic progression. FEBS Lett 582:1501–1507CrossRef
136.
Zurück zum Zitat Heo K et al (2013) Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC1. Oncogene 32:2510–2520CrossRef Heo K et al (2013) Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC1. Oncogene 32:2510–2520CrossRef
137.
Zurück zum Zitat Keller AA et al (2014) Transduction of proteins into Leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. J Cell Biochem 115:243–252CrossRef Keller AA et al (2014) Transduction of proteins into Leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. J Cell Biochem 115:243–252CrossRef
138.
Zurück zum Zitat Rosenbluh J et al (2004) Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. Biochim Biophys Acta 1664:230–240CrossRef Rosenbluh J et al (2004) Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. Biochim Biophys Acta 1664:230–240CrossRef
139.
Zurück zum Zitat Hariton-Gazal E et al (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586CrossRef Hariton-Gazal E et al (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586CrossRef
140.
Zurück zum Zitat Balicki D et al. (2002) Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci 99:7467–7471 Balicki D et al. (2002) Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci 99:7467–7471
141.
Zurück zum Zitat Kaouass M, Beaulieu R, Balicki D (2006) Histonefection: Novel and potent non-viral gene delivery. J Control Release 113:245–254CrossRef Kaouass M, Beaulieu R, Balicki D (2006) Histonefection: Novel and potent non-viral gene delivery. J Control Release 113:245–254CrossRef
Metadaten
Titel
Chemical and Biological Tools for the Preparation of Modified Histone Proteins
verfasst von
Cecil J. Howard
Ruixuan R. Yu
Miranda L. Gardner
John C. Shimko
Jennifer J. Ottesen
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/128_2015_629