Skip to main content
Erschienen in: Cognitive Computation 6/2019

23.07.2018

Clustering of Remote Sensing Imagery Using a Social Recognition-Based Multi-objective Gravitational Search Algorithm

verfasst von: Aizhu Zhang, Sihan Liu, Genyun Sun, Hui Huang, Ping Ma, Jun Rong, Hongzhang Ma, Chengyan Lin, Zhenjie Wang

Erschienen in: Cognitive Computation | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cognitively inspired swarm intelligence algorithms (SIAs) have attracted much attention in the research area of clustering since it can give machine the ability of self-learning to achieve better classification results. Recently, the SIA-based multi-objective optimization (MOO) methods have shown their superiorities in data clustering. However, their performances are limited when applying to the clustering of remote sensing imagery (RSI). To construct an excellent MOO-based clustering method, this paper presents a social recognition-based multi-objective gravitational search algorithm (SMGSA) to achieve simultaneous optimization of two conflicting cluster validity indices, i.e., the Xie-Beni (XB) index and the Jm index. In the SMGSA, searching particles not only are guided by those elite particles stored in an external archive by the gravitational force but also learn from the social recognition of the whole population through the position difference. SMGSA thereby formed with outstanding exploitation ability. Comparison experiments on two public RSI data sets, including a moderate aerial image and a hyperspectral, validated that the MOO-based clustering methods could obtain more accurate results than the single validity index-based method. Moreover, the SMGSA-based method can achieve superior results than that of the multi-objective gravitational search algorithm without social recognition ability. The proposed SMGSA performs favorable balance between the two conflicting cluster validity indices and achieves preferable classification for the RSI. In addition, this study indicates that the swarm intelligence-based cognitive computing is potential for the intelligent interpretation and understanding of complicated remote sensing scene.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang XX, Huang HX, Liao BS, et al. An ontology-based approach to metaphor cognitive computation. Mind Mach. 2013;23(1):105–21.CrossRef Huang XX, Huang HX, Liao BS, et al. An ontology-based approach to metaphor cognitive computation. Mind Mach. 2013;23(1):105–21.CrossRef
2.
Zurück zum Zitat Ding S, Zhang J, Jia H, et al. An adaptive density data stream clustering algorithm. Cogn Comput. 2016;8(1):30–8.CrossRef Ding S, Zhang J, Jia H, et al. An adaptive density data stream clustering algorithm. Cogn Comput. 2016;8(1):30–8.CrossRef
3.
Zurück zum Zitat Kim SS, McLoone S, Byeon JH, et al. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRef Kim SS, McLoone S, Byeon JH, et al. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRef
4.
Zurück zum Zitat Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.CrossRef Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.CrossRef
5.
Zurück zum Zitat Nanda SJ, Panda G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput. 2014;16:1–18.CrossRef Nanda SJ, Panda G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput. 2014;16:1–18.CrossRef
6.
Zurück zum Zitat Chakraborty S, Dey N, Samanta S, et al. Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput. 2017;9(6):817–26.CrossRef Chakraborty S, Dey N, Samanta S, et al. Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput. 2017;9(6):817–26.CrossRef
7.
Zurück zum Zitat Tang Q, Shen Y, Hu C, et al. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.CrossRef Tang Q, Shen Y, Hu C, et al. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.CrossRef
8.
Zurück zum Zitat Mukhopadhyay A, Bandyopadhyay S, Maulik U. Clustering using multi-objective genetic algorithm and its application to image segmentation[C]//Systems, Man and Cybernetics, 2006. SMC'06 IEEE International Conference on IEEE. 2006;3:2678–2683. Mukhopadhyay A, Bandyopadhyay S, Maulik U. Clustering using multi-objective genetic algorithm and its application to image segmentation[C]//Systems, Man and Cybernetics, 2006. SMC'06 IEEE International Conference on IEEE. 2006;3:2678–2683.
9.
Zurück zum Zitat Bong CW, Rajeswari M. Multi-objective nature-inspired clustering and classification techniques for image segmentation. Appl Soft Comput. 2011;11:3271–82.CrossRef Bong CW, Rajeswari M. Multi-objective nature-inspired clustering and classification techniques for image segmentation. Appl Soft Comput. 2011;11:3271–82.CrossRef
10.
Zurück zum Zitat Ma A, Zhong Y, Zhang L. Adaptive multiobjective memetic fuzzy clustering algorithm for remote sensing imagery. IEEE Trans Geosci Remote Sens. 2015;53(8):4202–17.CrossRef Ma A, Zhong Y, Zhang L. Adaptive multiobjective memetic fuzzy clustering algorithm for remote sensing imagery. IEEE Trans Geosci Remote Sens. 2015;53(8):4202–17.CrossRef
11.
Zurück zum Zitat Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221–48.CrossRef Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221–48.CrossRef
12.
Zurück zum Zitat Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput. 2004;8:256–79.CrossRef Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput. 2004;8:256–79.CrossRef
13.
Zurück zum Zitat Mousa AA, El-Shorbagy MA, Abd-El-Wahed WF. Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evol Comput. 2012;3:1–14.CrossRef Mousa AA, El-Shorbagy MA, Abd-El-Wahed WF. Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evol Comput. 2012;3:1–14.CrossRef
14.
Zurück zum Zitat Miettinen, K. Nonlinear multiobjective optimization, Springer Science & Business Media; 2012. Miettinen, K. Nonlinear multiobjective optimization, Springer Science & Business Media; 2012.
15.
Zurück zum Zitat Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.CrossRef Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.CrossRef
16.
Zurück zum Zitat Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput. 2014;8(2):173–95.CrossRef Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput. 2014;8(2):173–95.CrossRef
17.
Zurück zum Zitat Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T, editors. Evolutionary methods for design, optimization and control with applications to industrial problems. Berlin: Springer-Verlag; 2002. p. 95–100. Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T, editors. Evolutionary methods for design, optimization and control with applications to industrial problems. Berlin: Springer-Verlag; 2002. p. 95–100.
18.
Zurück zum Zitat Zitzler E, Künzli S. Indicator-based selection in multiobjective search[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg; 2004:832–842. Zitzler E, Künzli S. Indicator-based selection in multiobjective search[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg; 2004:832–842.
19.
Zurück zum Zitat Phan DH, Suzuki J. R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization[C]//Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE; 2013:1836–1845. Phan DH, Suzuki J. R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization[C]//Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE; 2013:1836–1845.
20.
Zurück zum Zitat Zhang Q, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Trans Evol Comput. 2007;11(6):712–31.CrossRef Zhang Q, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Trans Evol Comput. 2007;11(6):712–31.CrossRef
21.
Zurück zum Zitat Liu H L, Gu F, Cheung Y. T-MOEA/D: MOEA/D with objective transform in multi-objective problems[C]//Information Science and Management Engineering (ISME), 2010 International Conference of. IEEE; 2010;2:282–285. Liu H L, Gu F, Cheung Y. T-MOEA/D: MOEA/D with objective transform in multi-objective problems[C]//Information Science and Management Engineering (ISME), 2010 International Conference of. IEEE; 2010;2:282–285.
22.
Zurück zum Zitat Bandyopadhyay S, Maulik U, Mukhopadhyay A. Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens. 2007;45:1506–11.CrossRef Bandyopadhyay S, Maulik U, Mukhopadhyay A. Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens. 2007;45:1506–11.CrossRef
23.
Zurück zum Zitat Mukhopadhyay A, Maulik U. Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Trans Geosci Remote Sens. 2009;47(4):1132–8.CrossRef Mukhopadhyay A, Maulik U. Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Trans Geosci Remote Sens. 2009;47(4):1132–8.CrossRef
24.
Zurück zum Zitat Paoli A, Melgani F, Pasolli E. Clustering of hyperspectral images based on multiobjective particle swarm optimization. IEEE Trans Geosci Remote Sens. 2009;47(12):4175–88.CrossRef Paoli A, Melgani F, Pasolli E. Clustering of hyperspectral images based on multiobjective particle swarm optimization. IEEE Trans Geosci Remote Sens. 2009;47(12):4175–88.CrossRef
25.
Zurück zum Zitat Zhang M, Jiao L, Ma W, et al. Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Appl Soft Comput. 2016;48:621–37.CrossRef Zhang M, Jiao L, Ma W, et al. Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Appl Soft Comput. 2016;48:621–37.CrossRef
26.
Zurück zum Zitat Zhong Y, Zhang S, Zhang L. Automatic fuzzy clustering based on adaptive multi-objective differential evolution for remote sensing imagery. IEEE J-STARS. 2013;6(5):2290–301. Zhong Y, Zhang S, Zhang L. Automatic fuzzy clustering based on adaptive multi-objective differential evolution for remote sensing imagery. IEEE J-STARS. 2013;6(5):2290–301.
27.
Zurück zum Zitat Zhong Y, Ma A, Zhang L. An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE J-STARS. 2014;7(4):1235–48. Zhong Y, Ma A, Zhang L. An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE J-STARS. 2014;7(4):1235–48.
28.
Zurück zum Zitat Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inform Sciences. 2009;179(13):2232–48.CrossRef Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inform Sciences. 2009;179(13):2232–48.CrossRef
29.
Zurück zum Zitat Han X, Chang X, Quan L, et al. Feature subset selection by gravitational search algorithm optimization. Inf Sci. 2014;281:128–46.CrossRef Han X, Chang X, Quan L, et al. Feature subset selection by gravitational search algorithm optimization. Inf Sci. 2014;281:128–46.CrossRef
30.
Zurück zum Zitat Mirjalili S, Lewis A. Adaptive gbest-guided gravitational search algorithm. Neural Comput & Applic. 2014;25(7–8):1569–84.CrossRef Mirjalili S, Lewis A. Adaptive gbest-guided gravitational search algorithm. Neural Comput & Applic. 2014;25(7–8):1569–84.CrossRef
31.
Zurück zum Zitat Zhang A, Sun G, Wang Z, et al. A hybrid genetic algorithm and gravitational search algorithm for global optimization. Neural Netw World. 2015;25(1):53–73.CrossRef Zhang A, Sun G, Wang Z, et al. A hybrid genetic algorithm and gravitational search algorithm for global optimization. Neural Netw World. 2015;25(1):53–73.CrossRef
32.
Zurück zum Zitat Zhang A, Sun G, Ren J, et al. A dynamic neighborhood learning-based gravitational search algorithm. IEEE Transactions on Cybernetics. 2018;48(1):436–47.PubMedCrossRef Zhang A, Sun G, Ren J, et al. A dynamic neighborhood learning-based gravitational search algorithm. IEEE Transactions on Cybernetics. 2018;48(1):436–47.PubMedCrossRef
33.
Zurück zum Zitat Hassanzadeh H R, Rouhani M. A multi-objective gravitational search algorithm[C]//Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second International Conference on. IEEE Int Conf Comput Intell Commun Syst (CICSyN); 2010:7–12. Hassanzadeh H R, Rouhani M. A multi-objective gravitational search algorithm[C]//Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second International Conference on. IEEE Int Conf Comput Intell Commun Syst (CICSyN); 2010:7–12.
34.
Zurück zum Zitat Nobahari H, Nikusokhan M, Siarry P. Non-dominated sorting gravitational search algorithm[C]//Proc. of the 2011 International Conference on Swarm Intelligence, ICSI; 2011:1–10. Nobahari H, Nikusokhan M, Siarry P. Non-dominated sorting gravitational search algorithm[C]//Proc. of the 2011 International Conference on Swarm Intelligence, ICSI; 2011:1–10.
35.
Zurück zum Zitat Nobahari H, Nikusokhan M, Siarry P. A multi-objective gravitational search algorithm based on non-dominated sorting[J]. International Journal of Swarm Intelligence Research (IJSIR). 2012;3(3):32–49.CrossRef Nobahari H, Nikusokhan M, Siarry P. A multi-objective gravitational search algorithm based on non-dominated sorting[J]. International Journal of Swarm Intelligence Research (IJSIR). 2012;3(3):32–49.CrossRef
36.
Zurück zum Zitat Sun G, Zhang A, Jia X, et al. DMMOGSA: diversity-enhanced and memory-based multi-objective gravitational search algorithm. Inform Sciences. 2016;363:52–71.CrossRef Sun G, Zhang A, Jia X, et al. DMMOGSA: diversity-enhanced and memory-based multi-objective gravitational search algorithm. Inform Sciences. 2016;363:52–71.CrossRef
37.
Zurück zum Zitat Zhang A, Sun G, Wang Z. Remote sensing imagery classification using multi-objective gravitational search algorithm[C]//Image and Signal Processing for Remote Sensing XXII. International Society for Optics and Photonics. 2016;10004:100041I. Zhang A, Sun G, Wang Z. Remote sensing imagery classification using multi-objective gravitational search algorithm[C]//Image and Signal Processing for Remote Sensing XXII. International Society for Optics and Photonics. 2016;10004:100041I.
38.
Zurück zum Zitat Yin B, Guo Z, Liang Z, et al. Improved gravitational search algorithm with crossover. Comput Electr Eng. 2017. Yin B, Guo Z, Liang Z, et al. Improved gravitational search algorithm with crossover. Comput Electr Eng. 2017.
39.
Zurück zum Zitat Xie XL, Beni G. A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell. 1991;13(8):841–7.CrossRef Xie XL, Beni G. A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell. 1991;13(8):841–7.CrossRef
40.
Zurück zum Zitat Bezdek JC. Pattern recognition with fuzzy objective function algorithms. USA: Plenum Press; 1981.CrossRef Bezdek JC. Pattern recognition with fuzzy objective function algorithms. USA: Plenum Press; 1981.CrossRef
41.
Zurück zum Zitat Guo W, Wang L, Wu Q. Numerical comparisons of migration models for multi-objective biogeography-based optimization. Inf Sci. 2016;328:302–20.CrossRef Guo W, Wang L, Wu Q. Numerical comparisons of migration models for multi-objective biogeography-based optimization. Inf Sci. 2016;328:302–20.CrossRef
42.
Zurück zum Zitat Mirjalili S, Saremi S, Mirjalili SM, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl. 2016;47:106–19.CrossRef Mirjalili S, Saremi S, Mirjalili SM, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl. 2016;47:106–19.CrossRef
43.
Zurück zum Zitat Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell. 2002;24(12):1650–4.CrossRef Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell. 2002;24(12):1650–4.CrossRef
Metadaten
Titel
Clustering of Remote Sensing Imagery Using a Social Recognition-Based Multi-objective Gravitational Search Algorithm
verfasst von
Aizhu Zhang
Sihan Liu
Genyun Sun
Hui Huang
Ping Ma
Jun Rong
Hongzhang Ma
Chengyan Lin
Zhenjie Wang
Publikationsdatum
23.07.2018
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9582-9

Weitere Artikel der Ausgabe 6/2019

Cognitive Computation 6/2019 Zur Ausgabe