Skip to main content

2017 | OriginalPaper | Buchkapitel

12. CMOS Biosensors

verfasst von : Yanjun Ma, Edwin Kan

Erschienen in: Non-logic Devices in Logic Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We will start from the general requirements in chemical and biosensors and then narrow down the specific advantages of CMOS implementation in view of signal transduction from the biological to the electronic domains. As the amperometric sensing on CMOS is similar to most popular mixed-signal designs, we will only focus on field-effect sensors with a polarizable electrode or interface. A general device based on the neuromorphic principles in the previous chapters will be presented for its structure, operation, and circuit models. Variations in device implementation will be examined under the unified neuromorphic circuit model. The interface between the electrode and the buffer media will be modeled with an electrical network. We then present sample measurements in different buffer media and examine the current difficulties in realistic operations with long-term reliability. We will conclude at future challenges and outlook for the biological interface to the CMOS world.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamson, W. (1982). Physical chemistry of surfaces (4th ed.). New York: Wiley. Adamson, W. (1982). Physical chemistry of surfaces (4th ed.). New York: Wiley.
Zurück zum Zitat Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., et al. (2000). Cross-reactive chemical sensor arrays. Chemical Reviews, 100(7), 2595–2626.CrossRef Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., et al. (2000). Cross-reactive chemical sensor arrays. Chemical Reviews, 100(7), 2595–2626.CrossRef
Zurück zum Zitat Bard, J., & Faulkner, L. R. (2001). Double-layer structure and adsorption, Chap. 13. In Electrochemical methods: Fundamentals and applications (2nd ed., pp. 534–577). New York: Wiley. Bard, J., & Faulkner, L. R. (2001). Double-layer structure and adsorption, Chap. 13. In Electrochemical methods: Fundamentals and applications (2nd ed., pp. 534–577). New York: Wiley.
Zurück zum Zitat Berdondini, L., Chiappalone, M., van der Wal, P. D., Imfeld, K., de Rooij, N. F., Koudelka-Hep, M., et al. (2006). A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors and Actuators B: Chemical, 114(1), 530–541.CrossRef Berdondini, L., Chiappalone, M., van der Wal, P. D., Imfeld, K., de Rooij, N. F., Koudelka-Hep, M., et al. (2006). A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors and Actuators B: Chemical, 114(1), 530–541.CrossRef
Zurück zum Zitat Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, N. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors and Bioelectronics, 21, 167–174.CrossRef Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, N. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors and Bioelectronics, 21, 167–174.CrossRef
Zurück zum Zitat Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 17(1), 70–71.CrossRef Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 17(1), 70–71.CrossRef
Zurück zum Zitat Bousse, L., Shott, J., & Meindl, J. D. (1988). A process for the combined fabrication of ion sensors and CMOS circuits. IEEE Electron Device Letters, 9(1), 44–46.CrossRef Bousse, L., Shott, J., & Meindl, J. D. (1988). A process for the combined fabrication of ion sensors and CMOS circuits. IEEE Electron Device Letters, 9(1), 44–46.CrossRef
Zurück zum Zitat Burns, J. R., & Powlus, R. A. (1996, July 12). Threshold circuit utilizing field effect transistors. U.S. Patent #3,260,863 (filed March 19, 1964). Burns, J. R., & Powlus, R. A. (1996, July 12). Threshold circuit utilizing field effect transistors. U.S. Patent #3,260,863 (filed March 19, 1964).
Zurück zum Zitat Colapicchioni, C., Barbaro, A., Porcelli, F., & Giannini, I. (1991). Immunoenzymatic assay using CHEMFET devices. Sensors and Actuators B: Chemical, 4, 245–250.CrossRef Colapicchioni, C., Barbaro, A., Porcelli, F., & Giannini, I. (1991). Immunoenzymatic assay using CHEMFET devices. Sensors and Actuators B: Chemical, 4, 245–250.CrossRef
Zurück zum Zitat Freund, M. S., & Lewis, N. S. (1995). A chemically diverse conducting polymer-based “electronic nose”. Proceedings of the National Academy of Sciences, 92(7), 2652–2656.CrossRef Freund, M. S., & Lewis, N. S. (1995). A chemically diverse conducting polymer-based “electronic nose”. Proceedings of the National Academy of Sciences, 92(7), 2652–2656.CrossRef
Zurück zum Zitat Gardner, J. W., Varadan, V. K., & Awadelkarim, O. O. (2001). Microsensors, MEMS, and smart devices. New York: Wiley.CrossRef Gardner, J. W., Varadan, V. K., & Awadelkarim, O. O. (2001). Microsensors, MEMS, and smart devices. New York: Wiley.CrossRef
Zurück zum Zitat Gordon P. H., Jayant K., Cao Y., Auluck K., Phelps, J. B., & Kan, E. C. (2015). Critical assessment on modeling and design of non-Faradic CMOS electrochemical sensing. IEEE Sensor Journal, art. 2445292. Gordon P. H., Jayant K., Cao Y., Auluck K., Phelps, J. B., & Kan, E. C. (2015). Critical assessment on modeling and design of non-Faradic CMOS electrochemical sensing. IEEE Sensor Journal, art. 2445292.
Zurück zum Zitat Huang, I. Y., & Huang, R. S. (2002). Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors. Thin Solid Films, 406(1–2), 255–261.CrossRef Huang, I. Y., & Huang, R. S. (2002). Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors. Thin Solid Films, 406(1–2), 255–261.CrossRef
Zurück zum Zitat Hunter, R. J. (2001). Foundations of colloid science (2nd ed.). New York: Oxford University Press. Hunter, R. J. (2001). Foundations of colloid science (2nd ed.). New York: Oxford University Press.
Zurück zum Zitat Jacquot, B. C., Muñoz, N. L., Branch, D. W., & Kan, E. C. (2008). Non-faradic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors. Biosensors and Bioelectronics, 23(10), 1503.CrossRef Jacquot, B. C., Muñoz, N. L., Branch, D. W., & Kan, E. C. (2008). Non-faradic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors. Biosensors and Bioelectronics, 23(10), 1503.CrossRef
Zurück zum Zitat Janata, J. (2003). Electrochemical microsensors. Proceedings of the IEEE, 91(6), 864–869.CrossRef Janata, J. (2003). Electrochemical microsensors. Proceedings of the IEEE, 91(6), 864–869.CrossRef
Zurück zum Zitat Jayant, K., Auluck, K., Funke, M., Anwar, S., Phelps, J. B., Gordon, P. H., et al. (2013a). Programmable ion sensitive transistor interfaces I: Electrochemical gating. Physical Review E, 88(1), 012801.CrossRef Jayant, K., Auluck, K., Funke, M., Anwar, S., Phelps, J. B., Gordon, P. H., et al. (2013a). Programmable ion sensitive transistor interfaces I: Electrochemical gating. Physical Review E, 88(1), 012801.CrossRef
Zurück zum Zitat Jayant, K., Auluck, K., Funke, M., Anwar, S., Phelps, J. B., Gordon, P. H., et al. (2013b). Programmable ion sensitive transistor interfaces II: Biomolecular sensing and manipulation. Physical Review E, 88(1), 012802.CrossRef Jayant, K., Auluck, K., Funke, M., Anwar, S., Phelps, J. B., Gordon, P. H., et al. (2013b). Programmable ion sensitive transistor interfaces II: Biomolecular sensing and manipulation. Physical Review E, 88(1), 012802.CrossRef
Zurück zum Zitat Jayant, K., Auluck, K., Rodriguez, S., Cao, Y., & Kan, E. C. (2014). Programmable ion-sensitive transistor interfaces III. Design considerations, signal generation and sensitivity enhancement. Physical Review E, 89(5), 052817.CrossRef Jayant, K., Auluck, K., Rodriguez, S., Cao, Y., & Kan, E. C. (2014). Programmable ion-sensitive transistor interfaces III. Design considerations, signal generation and sensitivity enhancement. Physical Review E, 89(5), 052817.CrossRef
Zurück zum Zitat Jayant, K., Rajwade, S., Pollack, L., & Kan, E. C. (2010) Controlled adsorption and desorption of DNA on CMOS—Towards a bi-directional bio-electronic interface. Biosensors, Galsgow, UK. Jayant, K., Rajwade, S., Pollack, L., & Kan, E. C. (2010) Controlled adsorption and desorption of DNA on CMOS—Towards a bi-directional bio-electronic interface. Biosensors, Galsgow, UK.
Zurück zum Zitat Kilic, M. S., Bazant, M. Z., & Ajdari, A. (2007). Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E, 75, 021502.CrossRef Kilic, M. S., Bazant, M. Z., & Ajdari, A. (2007). Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E, 75, 021502.CrossRef
Zurück zum Zitat Kohashi, T., & Kurosawa, T. (1991). Electroosmotic display device. IEEE Transactions on Electron Devices, ED-38(9), 2064–2069.CrossRef Kohashi, T., & Kurosawa, T. (1991). Electroosmotic display device. IEEE Transactions on Electron Devices, ED-38(9), 2064–2069.CrossRef
Zurück zum Zitat Kovacs, G. T. A., Storment, C. W., Halks-Miller, M., Belczynski, C. R., Jr., Santina, C. C. D., Lewis, E. R., et al. (1994). Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Transactions on Biomedical Engineering, 41(6), 567–577.CrossRef Kovacs, G. T. A., Storment, C. W., Halks-Miller, M., Belczynski, C. R., Jr., Santina, C. C. D., Lewis, E. R., et al. (1994). Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Transactions on Biomedical Engineering, 41(6), 567–577.CrossRef
Zurück zum Zitat Kress-Rogers, E. (1997). Handbook of biosensors and electronic nose: Medicine, food, and the environment. Boca Raton: CRC Press. Kress-Rogers, E. (1997). Handbook of biosensors and electronic nose: Medicine, food, and the environment. Boca Raton: CRC Press.
Zurück zum Zitat Landheer, D., Aers, G., McKinnon, W. R., Deen, M. J., & Ranuarez, J. C. (2005). Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors. Journal of Applied Physics, 98, 044701.CrossRef Landheer, D., Aers, G., McKinnon, W. R., Deen, M. J., & Ranuarez, J. C. (2005). Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors. Journal of Applied Physics, 98, 044701.CrossRef
Zurück zum Zitat Lang, H. P., Baller, M. K., Battiston, F. M., Fritz, J., Berger, R., Ramseyer, J.-P., et al. (1999). The nanomechanical NOSE. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS ‘99), pp. 9–13. Lang, H. P., Baller, M. K., Battiston, F. M., Fritz, J., Berger, R., Ramseyer, J.-P., et al. (1999). The nanomechanical NOSE. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS ‘99), pp. 9–13.
Zurück zum Zitat Lee, J., & Kim, C.-J. (2000). Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems, 9(2), 171–180.CrossRef Lee, J., & Kim, C.-J. (2000). Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems, 9(2), 171–180.CrossRef
Zurück zum Zitat Liu, Y., Huber, D. E., Tabard-Cossa, V., & Dutton, R. W. (2010). Descreening of field effect in electrically gated nanopores. Applied Physics Letters, 97, 143109.CrossRef Liu, Y., Huber, D. E., Tabard-Cossa, V., & Dutton, R. W. (2010). Descreening of field effect in electrically gated nanopores. Applied Physics Letters, 97, 143109.CrossRef
Zurück zum Zitat Lonergan, M. C., Severin, E. J., Doleman, B. J., Beaber, S. A., Grubbs, R. H., & Lewis, N. S. (1996). Array-based sensing using chemically sensitive, carbon black-polymer resistors. Chemistry of Materials, 8, 2298–2312.CrossRef Lonergan, M. C., Severin, E. J., Doleman, B. J., Beaber, S. A., Grubbs, R. H., & Lewis, N. S. (1996). Array-based sensing using chemically sensitive, carbon black-polymer resistors. Chemistry of Materials, 8, 2298–2312.CrossRef
Zurück zum Zitat Madou, M. J., & Morrison, S. R. (1989). Chemical sensing with solid state devices. San Diego: Academic. Madou, M. J., & Morrison, S. R. (1989). Chemical sensing with solid state devices. San Diego: Academic.
Zurück zum Zitat Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler, K., & Fluri, K. (1994). Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering, 4, 257–265.CrossRef Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler, K., & Fluri, K. (1994). Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering, 4, 257–265.CrossRef
Zurück zum Zitat Matsumoto, H., & Colgate, J. E. (1990) Preliminary investigation of micropumping based on electrical control of interfacial tension. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 105–110. Matsumoto, H., & Colgate, J. E. (1990) Preliminary investigation of micropumping based on electrical control of interfacial tension. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 105–110.
Zurück zum Zitat Minch, B. A. (1997). The subthreshold floating-gate MOS transistor, Chap. 5. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, pp. 127–158. Minch, B. A. (1997). The subthreshold floating-gate MOS transistor, Chap. 5. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, pp. 127–158.
Zurück zum Zitat Shen, Y. N., Liu, Z., Jacquot, B. C., Minch, B. A., & Kan, E. C. (2004). Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS transistors (CνMOS). Sensors and Actuators B, 102(1), 35–43.CrossRef Shen, Y. N., Liu, Z., Jacquot, B. C., Minch, B. A., & Kan, E. C. (2004). Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS transistors (CνMOS). Sensors and Actuators B, 102(1), 35–43.CrossRef
Zurück zum Zitat Shen, N. Y., Liu, Z., Lee, C., Minch, B. A., & Kan, E. C. (2003). Charge-based chemical sensors: A neuromorphic approach with chemoreceptive neuron MOS (CνMOS) transistors. IEEE Transactions on Electron Devices, ED-50(10), 2171–2178.CrossRef Shen, N. Y., Liu, Z., Lee, C., Minch, B. A., & Kan, E. C. (2003). Charge-based chemical sensors: A neuromorphic approach with chemoreceptive neuron MOS (CνMOS) transistors. IEEE Transactions on Electron Devices, ED-50(10), 2171–2178.CrossRef
Zurück zum Zitat Shibata, T., & Ohmi, T. (1992). A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Transactions on Electron Devices, ED-39(6), 1444–1455.CrossRef Shibata, T., & Ohmi, T. (1992). A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Transactions on Electron Devices, ED-39(6), 1444–1455.CrossRef
Zurück zum Zitat Siretanu, I., Ebeling, D., Andersson, M. P., Stipp, S. L. S., Philipse, A., & Stuart, M. C. (2014). Direct observation of ionic structure at solid-liquid interfaces: A deep look into the Stern Layer. Scientific Reports, 4, 4956.CrossRef Siretanu, I., Ebeling, D., Andersson, M. P., Stipp, S. L. S., Philipse, A., & Stuart, M. C. (2014). Direct observation of ionic structure at solid-liquid interfaces: A deep look into the Stern Layer. Scientific Reports, 4, 4956.CrossRef
Zurück zum Zitat Smith, R., Huber, R. J., & Janata, J. (1984). Electrostatically protected ion sensitive field effect transistors. Sensors and Actuators, 5(2), 127–136.CrossRef Smith, R., Huber, R. J., & Janata, J. (1984). Electrostatically protected ion sensitive field effect transistors. Sensors and Actuators, 5(2), 127–136.CrossRef
Zurück zum Zitat Steiner, F. -P., Hierlemann, A., Cornila, C., Noetzel, G., Bachtold, M., Korvink, J. G., et al. (1995). Polymer coated capacitive microintegrated gas sensor. In Proceedings of the 8th International Conference on Solid-State Sensors and Actuators (Transducers ‘95), pp. 814–817. Steiner, F. -P., Hierlemann, A., Cornila, C., Noetzel, G., Bachtold, M., Korvink, J. G., et al. (1995). Polymer coated capacitive microintegrated gas sensor. In Proceedings of the 8th International Conference on Solid-State Sensors and Actuators (Transducers ‘95), pp. 814–817.
Zurück zum Zitat Stern, E., Steenblock, E. R., Reed, M. A., & Fahmy, T. M. (2008). Label-free electronic detection of the antigen-specific T-cell immune response. Nano Letters, 8(10), 3310–3314.CrossRef Stern, E., Steenblock, E. R., Reed, M. A., & Fahmy, T. M. (2008). Label-free electronic detection of the antigen-specific T-cell immune response. Nano Letters, 8(10), 3310–3314.CrossRef
Zurück zum Zitat Storey, B. D., & Bazant, M. Z. (2012). Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 86, 056303.CrossRef Storey, B. D., & Bazant, M. Z. (2012). Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 86, 056303.CrossRef
Zurück zum Zitat Ulman, A. (1996). Formation and structure of self-assembled monolayers. Chemical Reviews, 96(4), 1533–1554.CrossRef Ulman, A. (1996). Formation and structure of self-assembled monolayers. Chemical Reviews, 96(4), 1533–1554.CrossRef
Zurück zum Zitat van der Spiegel, J., Lauks, I., Chan, P., & Babic, D. (1983). The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sensors and Actuators, 4, 291–298.CrossRef van der Spiegel, J., Lauks, I., Chan, P., & Babic, D. (1983). The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sensors and Actuators, 4, 291–298.CrossRef
Zurück zum Zitat van Hal, R. E. G., Eijkel, J. C. T., & Bergveld, P. (1996). General model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 69, 31–62.CrossRef van Hal, R. E. G., Eijkel, J. C. T., & Bergveld, P. (1996). General model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 69, 31–62.CrossRef
Zurück zum Zitat Wang, L., Zhao, C., Duits, M. H. G., Mugele, F., & Siretanu, I. (2015). Detection of ion adsorption at solid–liquid interfaces using internal reflection ellipsometry. Sensors and Actuators B: Chemical, 210, 649–655.CrossRef Wang, L., Zhao, C., Duits, M. H. G., Mugele, F., & Siretanu, I. (2015). Detection of ion adsorption at solid–liquid interfaces using internal reflection ellipsometry. Sensors and Actuators B: Chemical, 210, 649–655.CrossRef
Zurück zum Zitat Wenzel, S. W., & White, R. M. (1988). A multisensor employing an ultrasonic lamb-wave oscillator. IEEE Transactions on Electron Devices, ED-35(6), 735–743.CrossRef Wenzel, S. W., & White, R. M. (1988). A multisensor employing an ultrasonic lamb-wave oscillator. IEEE Transactions on Electron Devices, ED-35(6), 735–743.CrossRef
Zurück zum Zitat Wong, H. S., & White, M. H. (1989). A CMOS-integrated ISFET-operational amplifier chemical sensor employing differential sensing. IEEE Transactions on Electron Devices, 36(3), 479–487.CrossRef Wong, H. S., & White, M. H. (1989). A CMOS-integrated ISFET-operational amplifier chemical sensor employing differential sensing. IEEE Transactions on Electron Devices, 36(3), 479–487.CrossRef
Zurück zum Zitat Yager, P., Domingo, G. J., & Gerdes, J. (2008). Annual Review of Biomedical Engineering, 10, 107–144.CrossRef Yager, P., Domingo, G. J., & Gerdes, J. (2008). Annual Review of Biomedical Engineering, 10, 107–144.CrossRef
Metadaten
Titel
CMOS Biosensors
verfasst von
Yanjun Ma
Edwin Kan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-48339-9_12

Neuer Inhalt