Skip to main content
Erschienen in:
Buchtitelbild

Open Access 2021 | OriginalPaper | Buchkapitel

7. Code Descriptions

verfasst von : Lars Bilke, Thomas Fischer, Dmitri Naumov, Daniel Pötschke, Karsten Rink, Amir Shoarian Sattari, Patrick Schmidt, Wenqing Wang, Keita Yoshioka

Erschienen in: GeomInt–Mechanical Integrity of Host Rocks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The FFS method (see Sect. 3.​2.​1) was developed to simulate direct shear tests. To provide a tool for the project work and get things easier done a graphical user interface (GUI) was also created. The GUI simply calls all necessary functions by letting the user either fill form fields or choose input files from the working folder. The rock parameters and the conditions of the direct shear test with the normal stress levels and shear displacements have to be selected. If an experiment is simulated the lab results can be selected as a text file so a visual comparison is possible. The geometry has to be loaded as a point cloud or an artificial surface can be generated. With small modifications the code can do multiple executions using artificial surfaces.

7.1 FFS—Forces on Fracture Surfaces

The FFS method (see Sect. 3.​2.​1) was developed to simulate direct shear tests. To provide a tool for the project work and get things easier done a graphical user interface (GUI) was also created. The GUI simply calls all necessary functions by letting the user either fill form fields or choose input files from the working folder. The rock parameters and the conditions of the direct shear test with the normal stress levels and shear displacements have to be selected. If an experiment is simulated the lab results can be selected as a text file so a visual comparison is possible. The geometry has to be loaded as a point cloud or an artificial surface can be generated. With small modifications the code can do multiple executions using artificial surfaces.
The GUI can be found at www.​github.​com/​Poetschke/​Ecodist/​. At github an executable is available which allows (after some installation) to test it without needing a Matlab licence. The scheme of the FFS algorithm is illustrated in Fig. 7.1.

7.2 LEM—Lattice-Element-Method

The lattice element method (LEM) is a well-known model for the simulation of the fracture in the cemented geomaterial and concrete. In comparison to the discrete element method (DEM), where the contact search and contact mechanics are implemented, the LEM represents the medium with a series of spring or beam elements to simulate the fracking process. The considered LEM in this study is fully developed in Kiel University (CAU Kiel) and is implemented in various engineering applications. In earlier studies, the application of LEM was restricted to fracture simulation in concrete, where the heterogeneity was introduced with defining the aggregates, mortar and interface bond zone [13]. With the development of LEM its application is extended to failure behavior of cemented geomaterials such as bio-cemented granular material [4]. The LEM is also used to simulate the fracture under dynamic loading for the foam concrete [5], masonry walls [6] and cemented geomaterial [7, 8]. Figure 7.2 depicts the coupled THM processes and affected geomaterial parameters, which are implemented in LEM algorithm.
In its recent application, the evaluation of effective properties in shallow crustal rock is investigated [9]. The developed in-house LEM model is applied for the simulation of the heat transfer in modified granular material and assessment of effective thermal conductivity [1013] as well as the Nano geocomposites [14]. The thermo-mechanical LEM model is implemented to simulate the change of the thermal conductivity of the rocks under mechanical and thermal loadings [15]. With an integration of the interface element, the LEM is able to simulate the fully coupled TM processes in cemented geomaterial [16]. The application of LEM is extended to model the hydro-mechanical processes [17, 18]. In these models, the dual lattice setup is considered, where lattice elements transfer the mechanical loads between the nodes and conduct elements only carry the fluid flow. Similar to DEM models [19], the LEM is extended to simulate the shrinkage and swelling processes in rock material. In the scope of this study, the LEM is also used for the simulation of pressurized percolation tests in rock material. In this model, the mass conservation law is implemented and artificial cavities for fluid or gas transport are defined. In CAU Kiel, we are devoted to continue the development of the LEM and overcome its application limitations. In this sense, the parallel computing for computing efficiency is under process and development. The ongoing work incorporate the plasticity, visco-plasticity, flow, hardening, fatigue and creep rules to establish a constitutive lattice model, which can be implemented in the practical applications to simulate the geomaterial response under the coupled THM processes.

7.3 SPH—Smoothed-Particle-Hydrodynamics

The (explicit) discrete nodal formulation of the Navier-Stokes equations basically results in computations of loops over all considered particles and for each additional nested loops over neighbouring particles. On the one hand, this circumstance renders SPH a computationally demanding method, on the other hand, the parallelization of this structure assembled from subroutines is quite generic on CPUs and even GPUs. Despite the Lagrangian character and the meshfree formulation, SPH codes can be compared to collocation methods resulting in particle-particle interactions (linear algebra operations) similar to explicit particle codes like Molecular Dynamics (MD) or Discrete Element Methods (DEM). Thus, they exhibit the same challenges as these explicit particle codes: for the calculating of the particle interactions, data from neigbouring particles is needed, and memory access and load balancing is unstructured. The neighbour search algorithm is most expensive and considerable communication as well as data migration between processors is necessary. Therefore the presented SPH formulation is implemented on top of the highly optimized and MPI-parallelized HOOMD-blue library developed by the Glotzer group at the University of Michigan, USA [20, 21]. This general purpose particle simulation toolkit, initially developed for MD, comes with MPI-based spatial domain decomposition, demonstrated weak and strong scalability for both, GPU- and CPU-accelerated HPC clusters, heuristic load balancing, algorithms for neigbour search and sorting methods to ensure optimal memory access patterns. The HOOMD-Blue software package is employed in a large selection of research areas, cf. the mentioned homepage. It is open-source, published under a BSD 3-clause license and a and comprehensive documentation is available. Recently, weak and strong scaling tests of fluid flow through porous media has been investigated on CPU- and GPU-HPC platforms, [22]. The implemented SPH model [23] includes both, CUDA and MPI features and uses the above mentioned advantages. Setup of the boundary value problem and initialisation of the geometry and particle data is implemented as user-friendly Python scripts. The main implementation are programmed in C++ and CUDA. This comprises among other things the evaluation of the kernel, the computation of density rate, pressure fields and particle accelerations as well as the time integration. Besides single-phase flow models based on the Navier-Stokes equations [24], multi-phase flow models of two immiscible fluids including surface tension has been investigated [25] as well as suspension-flow of a Newtonian/non-Newtonian carrier fluid and solid non-colloidal particles [26].

7.4 OpenGeoSys—Finite-Element-Method

OpenGeoSys (OGS) is a scientific open-source initiative for the numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractured media, inspired by FEFLOW [27] and ROCKFLOW concepts and continuously developed since the mid-eighties (Fig. 7.3), see e.g. [2831]. Meanwhile, more than 50 PhD projects have been dedicated to the OGS development since the merger in the nineties.
The OGS framework is targeting applications of various disciplines in environmental geoscience, e.g., in the fields of regional [32], contaminant [33] and coastal hydrology [34], fundamental geothermal processes [35] and geothermal energy systems [36, 37]. OGS is applied for energy storage applications in technical systems such as concrete [38] or zeolite-based heat storage [39] and natural systems such as salt caverns [40, 41]. OGS is also used in fundamental studies for nuclear waste management [42].
The most recent version, OpenGeoSys-6 (OGS-6) [43, 44], is a complete re-implementation of the multi-physics code OpenGeoSys-4/5 [45, 46] using advanced methods in software engineering and architecture with a focus on code quality, modularity, performance and comprehensive documentation. The current release version OpenGeoSys 6.2.0 [47] will be dedicated to analyze and predict the behaviour of geosystems becoming more and more relevant in future like nuclear waste deposition, geothermal use of subsurface resources for power and heat production, and geological storage of various energy carriers. Particular emphasis is put on the implementation of advanced numerical methods for the propagation of discontinuities, such as enriched finite element function spaces [48], non-local formulations [49] and phase-field models for fracture [50] with the ability to utilize HPC platforms [51, 52].
OpenGeoSys is participating in several international model development, validation and benchmarking initiatives, e.g., DEVOVALEX (with applications mainly in the assessment of waste repositories, see [53]), CO2BENCH (geological CO2 storage, see [54]), SeS Bench (reactive transport processes, see [55]) and HM-Intercomp (coupled hydrosystems, see [56]). The OGS community provides an ongoing series of benchmark books [57] and tutorials [58]. For more information please refer to the OpenGeoSys webpage www.​opengeosys.​org.
VPF—Variational Phase-Field model
The variational phase-field model (V-pf) is increasingly becoming a popular numerical method for fracture computation because of its ability to account for arbitrary numbers of pre-existing or propagating cracks in terms of energy minimization, without any a priori assumption on their geometry or restriction on the growth to specific grid directions. The variational phase-field model applied in this study has been based on the model proposed by [59, 60] where each process (e.g. mechanical or hydraulic) is solved in a staggered manner as in Fig. 7.4 and has been implemented in OGS utilizing its linear algebraic and finite element method platform.
The mechanical process solves the force equilibrium under the presence of the crack (damage) field in which the damage is accounted differently depending on the state of the load (e.g. compression or tension) in order to distinguish the material’s response under different types of loading. Various approaches have been proposed for the energy split strategy and the three of the most established approaches [6163] have been implemented. Though the process for the phase-field is an elliptic problem, the solution space is bounded in [0, 1] and is constrained by the irreversibility (i.e. fracture is not allowed to heal). Therefore, its solution requires a variational inequality solver and it is achieved through PETSc [64, 65]. Once the displacement and the phase-field are solved, the crack opening displacement will be reconstructed following an approximation proposed by [66] and the computation result will be passed onto the hydro process where fluid flows both in porous medium and fracture will be solved. These processes will be repeated in a staggered manner until the convergence is met (currently its judgement is based on the phase-field process).

7.5 HDF—Hybrid-Dimensional-Formulation

The Hybrid-Dimensional-Formulation results in a numerically strongly coupled system of governing equations. Different numerical strategies, namely the weak/staggered and strong/monolithic coupling schemes have been implemented in course of this project to solve the interaction between fluid flow and deformation of the surrounding porous matrix. Dependent on the method different technical requirements are demanded from the numerical framework. Hence for each one of the two coupling strategies an individual numerical framework has been chosen to guarantee numerical efficiency (Fig. 7.5).
For the strongly coupled scheme high performance has been ensured by choosing the Distributed and Unified Numerics Environment (DUNE) [67] to monolithically build and solve the global system of governing equations. The Dune implementation is based on modern C++ programming techniques to provide a unique combination of highly efficient and flexible code by providing a common interface at a very low overhead for various mesh based methods. Combined with the generalized discretization module PDELab [68] the basis for Finite Element calculations of the implemented solver has been built. Nevertheless, extensive work on the existing framework has been performed in order to allow the integration of zero-thickness elements; a feature which is not provided by default.
The staggered algorithm of the weak coupling scheme allows for calculations on different numerical domains. Efficient numerical implementation combined with a versatile way to handle continuously varying boundary conditions provided by the FEniCS computing platform [69] form the basis of the developed solver. Since the coupling between both domains is numerically strong an implicit coupling iteration is required. The Precise Code Interaction Coupling Environment (preCICE) [70] provides an easily accessible interface for parallel communication between existing solvers allowing for non-conformal discretization of computational domains in combination with a highly developed Quasi-Newton method to guarantee numerical stability.
Discretization for both methods, namely the construction of interface elements and separation of fracture surfaces is a challenging task especially in three dimensions. This challenge has been overcome by an in house meshing tool based on the Gmsh meshing facility [71].
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Literatur
1.
Zurück zum Zitat J.X. Liu, S.C. Deng, J. Zhang, and N.G Liang. Lattice type of fracture model for concrete. Theoretical and Applied Fracture Mechanics, 48:269–284, 2007.CrossRef J.X. Liu, S.C. Deng, J. Zhang, and N.G Liang. Lattice type of fracture model for concrete. Theoretical and Applied Fracture Mechanics, 48:269–284, 2007.CrossRef
2.
Zurück zum Zitat E.P. Prado and J.G.M. van Mier. Effect of particle structure on mode i fracture process in concrete. Engineering Fracture Mechanics, 70:1793–1807, 2003.CrossRef E.P. Prado and J.G.M. van Mier. Effect of particle structure on mode i fracture process in concrete. Engineering Fracture Mechanics, 70:1793–1807, 2003.CrossRef
3.
Zurück zum Zitat J.G.M. van Mier, M.R.A. van Vliet, and K. Wang Tai. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mechanics of Materials, 34, 2002. J.G.M. van Mier, M.R.A. van Vliet, and K. Wang Tai. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mechanics of Materials, 34, 2002.
4.
Zurück zum Zitat Z. H. Rizvi, M. Nikolic, and F. Wuttke. Lattice element method for simulations of failure in bio-cemented sands. Granular Matter, 21(18), 2019. Z. H. Rizvi, M. Nikolic, and F. Wuttke. Lattice element method for simulations of failure in bio-cemented sands. Granular Matter, 21(18), 2019.
5.
Zurück zum Zitat Z. H. Rizvi, A. S. Sattari, and F. Wuttke. Meso scale modelling of infill foam concrete wall for earthquake loads. 16th European Conference on Earthquake Engineering (16ECEE), Thessaloniki, Greece, 2018. Z. H. Rizvi, A. S. Sattari, and F. Wuttke. Meso scale modelling of infill foam concrete wall for earthquake loads. 16th European Conference on Earthquake Engineering (16ECEE), Thessaloniki, Greece, 2018.
6.
Zurück zum Zitat A. S. Sattari, Z. H. Rizvi, and F. Wuttke. The reinforcement of masonry walls in a mortar-brick interface: The experimental and numerical approach using the lattice element method (lem). 12th international congress on mechanics (12HSTAM), Thessaloniki, Greece, 2019. A. S. Sattari, Z. H. Rizvi, and F. Wuttke. The reinforcement of masonry walls in a mortar-brick interface: The experimental and numerical approach using the lattice element method (lem). 12th international congress on mechanics (12HSTAM), Thessaloniki, Greece, 2019.
7.
Zurück zum Zitat Z.H. Rizvi, F. Wuttke, and A.S. Sattari. Dynamic analysis by lattice element method simulation. Springer Series in Geomechanics and Geoengineering, (216849):405–409, 2018. cited By 2. Z.H. Rizvi, F. Wuttke, and A.S. Sattari. Dynamic analysis by lattice element method simulation. Springer Series in Geomechanics and Geoengineering, (216849):405–409, 2018. cited By 2.
8.
Zurück zum Zitat Z.H. Rizvi, S.H. Mustafa, A.S. Sattari, S. Ahmad, P. Furtner, and F. Wuttke. Dynamic lattice element modelling of cemented geomaterials. In Amit Prashant, Ajanta Sachan, and Chandrakant S. Desai, editors, Advances in Computer Methods and Geomechanics, pages 655–665, Singapore, 2020. Springer Singapore.CrossRef Z.H. Rizvi, S.H. Mustafa, A.S. Sattari, S. Ahmad, P. Furtner, and F. Wuttke. Dynamic lattice element modelling of cemented geomaterials. In Amit Prashant, Ajanta Sachan, and Chandrakant S. Desai, editors, Advances in Computer Methods and Geomechanics, pages 655–665, Singapore, 2020. Springer Singapore.CrossRef
9.
Zurück zum Zitat Z.H. Rizvi, M.A. Khan, H.B. Motra, F. Wuttke, and J. Ahmad. Effective physical parameter evaluation of shallow crustal rocks by lattice element method. Materials Today: Proceedings, 2019. Z.H. Rizvi, M.A. Khan, H.B. Motra, F. Wuttke, and J. Ahmad. Effective physical parameter evaluation of shallow crustal rocks by lattice element method. Materials Today: Proceedings, 2019.
10.
Zurück zum Zitat Z.H. Rizvi, H.H. Zaidi, S.J Akhtar, A.S. Sattari, and F. Wuttke. Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat and Mass Transfer, Feb 2020. Z.H. Rizvi, H.H. Zaidi, S.J Akhtar, A.S. Sattari, and F. Wuttke. Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat and Mass Transfer, Feb 2020.
11.
Zurück zum Zitat Z.H. Rizvi, D. Shrestha, A.S. Sattari, and F. Wuttke. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method. Heat Mass Transf, 54(2):483–499, 2018.CrossRef Z.H. Rizvi, D. Shrestha, A.S. Sattari, and F. Wuttke. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method. Heat Mass Transf, 54(2):483–499, 2018.CrossRef
12.
Zurück zum Zitat Z.H. Rizvi, A.S. Sattari, and F. Wuttke. Numerical analysis of heat conduction in granular geo-material using lattice element method. Energy Geotechnics—Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT, pages 367–372, 2016. Z.H. Rizvi, A.S. Sattari, and F. Wuttke. Numerical analysis of heat conduction in granular geo-material using lattice element method. Energy Geotechnics—Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT, pages 367–372, 2016.
13.
Zurück zum Zitat D. Shrestha, Z.H. Rizvi, and F. Wuttke. Effective thermal conductivity of unsaturated granular geocomposite using lattice element method. Heat and Mass Transfer, 55(6):1671–1683, 2019.CrossRef D. Shrestha, Z.H. Rizvi, and F. Wuttke. Effective thermal conductivity of unsaturated granular geocomposite using lattice element method. Heat and Mass Transfer, 55(6):1671–1683, 2019.CrossRef
14.
Zurück zum Zitat Z.H. Rizvi, K. Sembdner, A. Suman, M.J. Giri Prasad, and F. Wuttke. Experimental and numerical investigation of thermo-mechanical properties for nano-geocomposite. International Journal of Thermophysics, 40(5), 2019. cited By 1. Z.H. Rizvi, K. Sembdner, A. Suman, M.J. Giri Prasad, and F. Wuttke. Experimental and numerical investigation of thermo-mechanical properties for nano-geocomposite. International Journal of Thermophysics, 40(5), 2019. cited By 1.
15.
Zurück zum Zitat A.S. Sattari, Z.H. Rizvi, H.B. Motra, and F. Wuttke. Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method. Granular Matter, 19(66), 2017. A.S. Sattari, Z.H. Rizvi, H.B. Motra, and F. Wuttke. Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method. Granular Matter, 19(66), 2017.
16.
Zurück zum Zitat A. S. Sattari, H. B. Motra, Z. H. Rizvi, and F. Wuttke. A new lattice element method (lem) with integrated interface elements for determining the effective thermal conductivity of rock solids under thermo-mechanical processes. International Symposium on Energy Geotechnics (SEG), Energy Geotechnics, pages 266–275, 2019. A. S. Sattari, H. B. Motra, Z. H. Rizvi, and F. Wuttke. A new lattice element method (lem) with integrated interface elements for determining the effective thermal conductivity of rock solids under thermo-mechanical processes. International Symposium on Energy Geotechnics (SEG), Energy Geotechnics, pages 266–275, 2019.
17.
Zurück zum Zitat P. Grassl. A lattice approach to model flow in cracked concrete. Cement & Concrete Composites, 31:454–460, 2009.CrossRef P. Grassl. A lattice approach to model flow in cracked concrete. Cement & Concrete Composites, 31:454–460, 2009.CrossRef
18.
Zurück zum Zitat P. Grassl, C. Fahy, D. Gallipoli, and J. Bolander. A lattice model for liquid transport in cracked unsaturated heterogeneous porous materials. VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2013. P. Grassl, C. Fahy, D. Gallipoli, and J. Bolander. A lattice model for liquid transport in cracked unsaturated heterogeneous porous materials. VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2013.
19.
Zurück zum Zitat J. Sima, M. Jiang, and C. Zhou. Modelling desiccation cracking in thin clay layer using three-dimensional discrete element method. AIP Conference Proceedings, 1542(1), 2013. J. Sima, M. Jiang, and C. Zhou. Modelling desiccation cracking in thin clay layer using three-dimensional discrete element method. AIP Conference Proceedings, 1542(1), 2013.
20.
Zurück zum Zitat Joshua A. Anderson, Chris D. Lorenz, and Alex Travesset. General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics, 227(10):5342–5359, 2008. Joshua A. Anderson, Chris D. Lorenz, and Alex Travesset. General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics, 227(10):5342–5359, 2008.
21.
Zurück zum Zitat Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga, Jaime A Millan, David C Morse, and Sharon C Glotzer. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Computer Physics Communications, 192:97–107, 2015. Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga, Jaime A Millan, David C Morse, and Sharon C Glotzer. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Computer Physics Communications, 192:97–107, 2015.
22.
Zurück zum Zitat M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke. A cross-platform, high-performance SPH implementation of flow in \(\mu \)CT imaged porous media for digital rock physics. Computer Physics Communications, 2019. submitted for publication. M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke. A cross-platform, high-performance SPH implementation of flow in \(\mu \)CT imaged porous media for digital rock physics. Computer Physics Communications, 2019. submitted for publication.
23.
Zurück zum Zitat Rakulan Sivanesapillai. Pore-scale study of non-darcian fluid flow in porous media using smoothed-particle hydrodynamics. 2016. Rakulan Sivanesapillai. Pore-scale study of non-darcian fluid flow in porous media using smoothed-particle hydrodynamics. 2016.
24.
Zurück zum Zitat R Sivanesapillai, H Steeb, and A Hartmaier. Transition of effective hydraulic properties from low to high reynolds number flow in porous media. Geophysical Research Letters, 41(14):4920–4928, 2014.CrossRef R Sivanesapillai, H Steeb, and A Hartmaier. Transition of effective hydraulic properties from low to high reynolds number flow in porous media. Geophysical Research Letters, 41(14):4920–4928, 2014.CrossRef
25.
Zurück zum Zitat Rakulan Sivanesapillai, Nadine Falkner, Alexander Hartmaier, and Holger Steeb. A csf-sph method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Advances in water resources, 95:212–234, 2016.CrossRef Rakulan Sivanesapillai, Nadine Falkner, Alexander Hartmaier, and Holger Steeb. A csf-sph method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Advances in water resources, 95:212–234, 2016.CrossRef
26.
Zurück zum Zitat D. Markauskas, H. Kruggel-Emden, R. Sivanesapillai, and H. Steeb. Comparative study on mesh-based and mesh-less coupled cfd-dem methods to model particle-laden flow. Powder Technology, 305:78–88, 2017. D. Markauskas, H. Kruggel-Emden, R. Sivanesapillai, and H. Steeb. Comparative study on mesh-based and mesh-less coupled cfd-dem methods to model particle-laden flow. Powder Technology, 305:78–88, 2017.
27.
Zurück zum Zitat H.-J.G. Diersch. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, 2014. cited By 156. H.-J.G. Diersch. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, 2014. cited By 156.
28.
Zurück zum Zitat Olaf Kolditz. Zur Modellierung und Simulation geothermischer Transportprozesse in untertägigen Zirkulationssystemen. PhD thesis, Akademie der Wissenschaften der DDR, Berlin, 1990. Olaf Kolditz. Zur Modellierung und Simulation geothermischer Transportprozesse in untertägigen Zirkulationssystemen. PhD thesis, Akademie der Wissenschaften der DDR, Berlin, 1990.
29.
Zurück zum Zitat J. Wollrath. Ein Strömungs- und Transportmodell für klüftiges Gestein und Untersuchungen zu homogenen Ersatzsystemen. PhD thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, 1990. J. Wollrath. Ein Strömungs- und Transportmodell für klüftiges Gestein und Untersuchungen zu homogenen Ersatzsystemen. PhD thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, 1990.
30.
Zurück zum Zitat K.P. Kroehn. Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der Finiten Elemente. PhD thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, 1991. K.P. Kroehn. Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der Finiten Elemente. PhD thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, 1991.
31.
Zurück zum Zitat Reiner Helmig. Theorie und Numerik der Mehrphasenströmungen in geklüftet-porösen Medien. PhD thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, 1993. Reiner Helmig. Theorie und Numerik der Mehrphasenströmungen in geklüftet-porösen Medien. PhD thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, 1993.
32.
Zurück zum Zitat M. Jing, F. Heße, R. Kumar, W. Wang, T. Fischer, M. Walther, M. Zink, A. Zech, L. Samaniego, O. Kolditz, and S. Attinger. Improved regional-scale groundwater representation by the coupling of the mesoscale hydrologic model (mhm v5.7) to the groundwater model opengeosys (ogs). Geoscientific Model Development, 11(5):1989–2007, 2018. M. Jing, F. Heße, R. Kumar, W. Wang, T. Fischer, M. Walther, M. Zink, A. Zech, L. Samaniego, O. Kolditz, and S. Attinger. Improved regional-scale groundwater representation by the coupling of the mesoscale hydrologic model (mhm v5.7) to the groundwater model opengeosys (ogs). Geoscientific Model Development, 11(5):1989–2007, 2018.
33.
Zurück zum Zitat E. Nixdorf, Y. Sun, M. Lin, and O. Kolditz. Development and application of a novel method for regional assessment of groundwater contamination risk in the songhua river basin. Science of the Total Environment, 605-606:598–609, 2017.CrossRef E. Nixdorf, Y. Sun, M. Lin, and O. Kolditz. Development and application of a novel method for regional assessment of groundwater contamination risk in the songhua river basin. Science of the Total Environment, 605-606:598–609, 2017.CrossRef
34.
Zurück zum Zitat M. Walther, T. Graf, O. Kolditz, R. Liedl, and V. Post. How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers? Journal of Hydrology, 551:648–659, 2017.CrossRef M. Walther, T. Graf, O. Kolditz, R. Liedl, and V. Post. How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers? Journal of Hydrology, 551:648–659, 2017.CrossRef
35.
Zurück zum Zitat F. Parisio, S. Vinciguerra, O. Kolditz, and T. Nagel. The brittle-ductile transition in active volcanoes. Scientific Reports, 9(1), 2019. F. Parisio, S. Vinciguerra, O. Kolditz, and T. Nagel. The brittle-ductile transition in active volcanoes. Scientific Reports, 9(1), 2019.
36.
Zurück zum Zitat B. Meng, T. Vienken, O. Kolditz, and H. Shao. Modeling the groundwater temperature response to extensive operation of ground source heat pump systems: A case study in germany. Energy Procedia, 152:971–977, 2018.CrossRef B. Meng, T. Vienken, O. Kolditz, and H. Shao. Modeling the groundwater temperature response to extensive operation of ground source heat pump systems: A case study in germany. Energy Procedia, 152:971–977, 2018.CrossRef
37.
Zurück zum Zitat Philipp Hein, Ke Zhu, Anke Bucher, Olaf Kolditz, Zhonghe Pang, and Haibing Shao. Quantification of exploitable shallow geothermal energy by using borehole heat exchanger coupled ground source heat pump systems. Energy Conversion and Management, 127:80 – 89, 2016.CrossRef Philipp Hein, Ke Zhu, Anke Bucher, Olaf Kolditz, Zhonghe Pang, and Haibing Shao. Quantification of exploitable shallow geothermal energy by using borehole heat exchanger coupled ground source heat pump systems. Energy Conversion and Management, 127:80 – 89, 2016.CrossRef
38.
Zurück zum Zitat X.-Y. Miao, O. Kolditz, and T. Nagel. Modelling thermal performance degradation of high and low-temperature solid thermal energy storage due to cracking processes using a phase-field approach. Energy Conversion and Management, pages 977–989, 2019. X.-Y. Miao, O. Kolditz, and T. Nagel. Modelling thermal performance degradation of high and low-temperature solid thermal energy storage due to cracking processes using a phase-field approach. Energy Conversion and Management, pages 977–989, 2019.
39.
Zurück zum Zitat C. Lehmann, O. Kolditz, and T. Nagel. Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage. International Journal of Heat and Mass Transfer, 128:1102–1113, 2019.CrossRef C. Lehmann, O. Kolditz, and T. Nagel. Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage. International Journal of Heat and Mass Transfer, 128:1102–1113, 2019.CrossRef
40.
Zurück zum Zitat Norbert Böttcher, Uwe-Jens Görke, Olaf Kolditz, and Thomas Nagel. Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environmental Earth Sciences, 76(3):98, 2017. Norbert Böttcher, Uwe-Jens Görke, Olaf Kolditz, and Thomas Nagel. Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environmental Earth Sciences, 76(3):98, 2017.
41.
Zurück zum Zitat Thomas Nagel, Wolfgang Minkley, Norbert Böttcher, Dmitri Yu. Naumov, Uwe-Jens Görke, and Olaf Kolditz. Implicit numerical integration and consistent linearization of inelastic constitutive models of rock salt. Computers & Structures, 182:87–103, apr 2017. Thomas Nagel, Wolfgang Minkley, Norbert Böttcher, Dmitri Yu. Naumov, Uwe-Jens Görke, and Olaf Kolditz. Implicit numerical integration and consistent linearization of inelastic constitutive models of rock salt. Computers & Structures, 182:87–103, apr 2017.
42.
Zurück zum Zitat H. Shao, J. Hesser, O. Kolditz, and W. Wang. Hydraulic characterisation of clay rock under consideration of coupled thm properties. Environmental Science and Engineering, pages 33–40, 2019. H. Shao, J. Hesser, O. Kolditz, and W. Wang. Hydraulic characterisation of clay rock under consideration of coupled thm properties. Environmental Science and Engineering, pages 33–40, 2019.
43.
Zurück zum Zitat Dmitri Yu. Naumov, Lars Bilke, Thomas Fischer, Yonghui Huang, Christoph Lehmann, Xing-Yuan Miao, Thomas Nagel, Francesco Parisio, Karsten Rink, Haibing Shao, Wenqing Wang, Norihiro Watanabe, Tianyuan Zheng, and Olaf Kolditz. Appendix a: Opengeosys-6. In Olaf Kolditz, Thomas Nagel, Hua Shao, Wenqing Wang, and Sebastian Bauer, editors, Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking, pages 271–277. Springer International Publishing, 2018. Dmitri Yu. Naumov, Lars Bilke, Thomas Fischer, Yonghui Huang, Christoph Lehmann, Xing-Yuan Miao, Thomas Nagel, Francesco Parisio, Karsten Rink, Haibing Shao, Wenqing Wang, Norihiro Watanabe, Tianyuan Zheng, and Olaf Kolditz. Appendix a: Opengeosys-6. In Olaf Kolditz, Thomas Nagel, Hua Shao, Wenqing Wang, and Sebastian Bauer, editors, Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking, pages 271–277. Springer International Publishing, 2018.
44.
Zurück zum Zitat Lars Bilke, Bernd Flemisch, Olaf Kolditz, Rainer Helmig, and Thomas Nagel. Development of open-source porous-media simulators: principles and experiences. Transport in Porous Media, 2019. under review. Lars Bilke, Bernd Flemisch, Olaf Kolditz, Rainer Helmig, and Thomas Nagel. Development of open-source porous-media simulators: principles and experiences. Transport in Porous Media, 2019. under review.
45.
Zurück zum Zitat O. Kolditz and S. Bauer. A process-oriented approach to computing multi-field problems in porous media. Journal of Hydroinformatics, 6(3):225–244, 2004.CrossRef O. Kolditz and S. Bauer. A process-oriented approach to computing multi-field problems in porous media. Journal of Hydroinformatics, 6(3):225–244, 2004.CrossRef
46.
Zurück zum Zitat Wenqing Wang and Olaf Kolditz. Objectoriented finite element analysis of thermohydromechanical (thm) problems in porous media. International Journal for Numerical Methods in Engineering, 69(1):162–201, 2006.CrossRef Wenqing Wang and Olaf Kolditz. Objectoriented finite element analysis of thermohydromechanical (thm) problems in porous media. International Journal for Numerical Methods in Engineering, 69(1):162–201, 2006.CrossRef
47.
Zurück zum Zitat Dmitry Yu. Naumov, Tom Fischer, Lars Bilke, Karsten Rink, Christoph Lehmann, Norihiro Watanabe, Wenqing Wang, Yonghui Huang, Renchao Lu, Chaofan Chen, Jasper Bathmann, Xingyuan Miao, Keita Yoshioka, Haibing Shao, Marc Walther, Tianyuan Zheng, Francesco Parisio, Jan Thiedau, Carolin Helbig, Jörg Buchwald, and Thomas Nagel. ufz/ogs: 6.1.0, January 2018. Dmitry Yu. Naumov, Tom Fischer, Lars Bilke, Karsten Rink, Christoph Lehmann, Norihiro Watanabe, Wenqing Wang, Yonghui Huang, Renchao Lu, Chaofan Chen, Jasper Bathmann, Xingyuan Miao, Keita Yoshioka, Haibing Shao, Marc Walther, Tianyuan Zheng, Francesco Parisio, Jan Thiedau, Carolin Helbig, Jörg Buchwald, and Thomas Nagel. ufz/ogs: 6.1.0, January 2018.
48.
Zurück zum Zitat N Watanabe, W Wang, J Taron, UJ Görke, and O Kolditz. Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. International Journal for Numerical Methods in Engineering, 90(8):1010–1034, 2012. N Watanabe, W Wang, J Taron, UJ Görke, and O Kolditz. Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. International Journal for Numerical Methods in Engineering, 90(8):1010–1034, 2012.
49.
Zurück zum Zitat F. Parisio, D. Yu. Naumov, O. Kolditz, and T. Nagel. Material forces: An insight into configurational mechanics. Mechanics Research Communications, 93:114–118, 2018.CrossRef F. Parisio, D. Yu. Naumov, O. Kolditz, and T. Nagel. Material forces: An insight into configurational mechanics. Mechanics Research Communications, 93:114–118, 2018.CrossRef
50.
Zurück zum Zitat K. Yoshioka, F. Parisio, D. Naumov, R. Lu, O. Kolditz, and T. Nagel. Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing. GEM—International Journal on Geomathematics, 10(1), 2019. K. Yoshioka, F. Parisio, D. Naumov, R. Lu, O. Kolditz, and T. Nagel. Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing. GEM—International Journal on Geomathematics, 10(1), 2019.
51.
Zurück zum Zitat Wenqing Wang, Thomas Fischer, Björn Zehner, Norbert Böttcher, Uwe-Jens Görke, and Olaf Kolditz. A parallel finite element method for two-phase flow processes in porous media: OpenGeoSys with PETSc. Environmental Earth Sciences, 73(5):2269–2285, 2015.CrossRef Wenqing Wang, Thomas Fischer, Björn Zehner, Norbert Böttcher, Uwe-Jens Görke, and Olaf Kolditz. A parallel finite element method for two-phase flow processes in porous media: OpenGeoSys with PETSc. Environmental Earth Sciences, 73(5):2269–2285, 2015.CrossRef
52.
Zurück zum Zitat Wenqing Wang, Olaf Kolditz, and Thomas Nagel. Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices. Applied Energy, 185(P2):1954–1964, 2017.CrossRef Wenqing Wang, Olaf Kolditz, and Thomas Nagel. Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices. Applied Energy, 185(P2):1954–1964, 2017.CrossRef
53.
Zurück zum Zitat J.T. Birkholzer, A.E. Bond, J.A. Hudson, L. Jing, C.-F. Tsang, H. Shao, and O. Kolditz. Decovalex-2015: an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (thmc) processes in geological systems. Environmental Earth Sciences, 77(14), 2018. cited By 1. J.T. Birkholzer, A.E. Bond, J.A. Hudson, L. Jing, C.-F. Tsang, H. Shao, and O. Kolditz. Decovalex-2015: an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (thmc) processes in geological systems. Environmental Earth Sciences, 77(14), 2018. cited By 1.
54.
Zurück zum Zitat O. Kolditz, S. Bauer, C. Beyer, N. Böttcher, P. Dietrich, U.-J. Görke, T. Kalbacher, C.-H. Park, U. Sauer, C. Schütze, H. Shao, A. Singh, J. Taron, W. Wang, and N. Watanabe. A systematic benchmarking approach for geologic CO2 injection and storage. Environmental Earth Sciences, 67(2):613–632, 2012.CrossRef O. Kolditz, S. Bauer, C. Beyer, N. Böttcher, P. Dietrich, U.-J. Görke, T. Kalbacher, C.-H. Park, U. Sauer, C. Schütze, H. Shao, A. Singh, J. Taron, W. Wang, and N. Watanabe. A systematic benchmarking approach for geologic CO2 injection and storage. Environmental Earth Sciences, 67(2):613–632, 2012.CrossRef
55.
Zurück zum Zitat C.I. Steefel, C.A.J. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz, V. Lagneau, P.C. Lichtner, K.U. Mayer, J.C.L. Meeussen, S. Molins, D. Moulton, H. Shao, J. Šimůnek, N. Spycher, S.B. Yabusaki, and G.T. Yeh. Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3):445–478, 2015. C.I. Steefel, C.A.J. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz, V. Lagneau, P.C. Lichtner, K.U. Mayer, J.C.L. Meeussen, S. Molins, D. Moulton, H. Shao, J. Šimůnek, N. Spycher, S.B. Yabusaki, and G.T. Yeh. Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3):445–478, 2015.
56.
Zurück zum Zitat Reed M. Maxwell, Mario Putti, Steven Meyerhoff, JensOlaf Delfs, Ian M. Ferguson, Valeriy Ivanov, Jongho Kim, Olaf Kolditz, Stefan J. Kollet, Mukesh Kumar, Sonya Lopez, Jie Niu, Claudio Paniconi, YoungJin Park, Mantha S. Phanikumar, Chaopeng Shen, Edward A. Sudicky, and Mauro Sulis. Surfacesubsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 50(2):1531–1549, 2016.CrossRef Reed M. Maxwell, Mario Putti, Steven Meyerhoff, JensOlaf Delfs, Ian M. Ferguson, Valeriy Ivanov, Jongho Kim, Olaf Kolditz, Stefan J. Kollet, Mukesh Kumar, Sonya Lopez, Jie Niu, Claudio Paniconi, YoungJin Park, Mantha S. Phanikumar, Chaopeng Shen, Edward A. Sudicky, and Mauro Sulis. Surfacesubsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 50(2):1531–1549, 2016.CrossRef
57.
Zurück zum Zitat Olaf Kolditz, Thomas Nagel, Hua Shao, Wenqing Wang, and Sebastian Bauer, editors. Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Terrestrial Environmental Sciences. Springer International Publishing, Cham, 2018. Olaf Kolditz, Thomas Nagel, Hua Shao, Wenqing Wang, and Sebastian Bauer, editors. Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Terrestrial Environmental Sciences. Springer International Publishing, Cham, 2018.
58.
Zurück zum Zitat Christoph Lehmann, Olaf Kolditz, and Thomas Nagel. Models of Thermochemical Heat Storage. Computational Modeling of Energy Systems. Springer International Publishing, 2018.CrossRef Christoph Lehmann, Olaf Kolditz, and Thomas Nagel. Models of Thermochemical Heat Storage. Computational Modeling of Energy Systems. Springer International Publishing, 2018.CrossRef
59.
Zurück zum Zitat Blaise Bourdin, Chukwudi P. Chukwudozie, and Keita Yoshioka. A Variational Approach to the Numerical Simulation of Hydraulic Fracturing. In the 2012 SPE Annual Technical Conference and Exhibition, 2012. Blaise Bourdin, Chukwudi P. Chukwudozie, and Keita Yoshioka. A Variational Approach to the Numerical Simulation of Hydraulic Fracturing. In the 2012 SPE Annual Technical Conference and Exhibition, 2012.
60.
Zurück zum Zitat C. Chukwudozie, B. Bourdin, and K. Yoshioka. A variational phase-field model for hydraulic fracturing in porous media. Computer Methods in Applied Mechanics and Engineering, 347:957–982, 2019.CrossRef C. Chukwudozie, B. Bourdin, and K. Yoshioka. A variational phase-field model for hydraulic fracturing in porous media. Computer Methods in Applied Mechanics and Engineering, 347:957–982, 2019.CrossRef
61.
Zurück zum Zitat Hanen Amor, Jean-jacques Marigo, and Corrado Maurini. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. Journal of Mechanics and Physics of Solids, 57(8):1209–1229, 2009.CrossRef Hanen Amor, Jean-jacques Marigo, and Corrado Maurini. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. Journal of Mechanics and Physics of Solids, 57(8):1209–1229, 2009.CrossRef
62.
Zurück zum Zitat C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering, 83(10):1273–1311, 2010.CrossRef C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering, 83(10):1273–1311, 2010.CrossRef
63.
Zurück zum Zitat Francesco Freddi and Gianni Royer-Carfagni. Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids, 58(8):1154–1174, 2010.CrossRef Francesco Freddi and Gianni Royer-Carfagni. Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids, 58(8):1154–1174, 2010.CrossRef
64.
Zurück zum Zitat S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11—Revision 3.11, Argonne National Laboratory, 2019. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11—Revision 3.11, Argonne National Laboratory, 2019.
65.
Zurück zum Zitat S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page, 2019. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page, 2019.
66.
Zurück zum Zitat Keita Yoshioka, Dmitri Naumov, and Olaf Kolditz. On Crack Opening Computation in Variational Phase-Field Models for Fracture. Computer Methods in Applied Mechanics and Engineering, under review. Keita Yoshioka, Dmitri Naumov, and Olaf Kolditz. On Crack Opening Computation in Variational Phase-Field Models for Fracture. Computer Methods in Applied Mechanics and Engineering, under review.
67.
Zurück zum Zitat M. Blatt, A. Burchardt, A. Dedner, Ch. Engwer, J. Fahlke, B. Flemisch, Ch. Gersbacher, C. Gräser, F. Gruber, Ch. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski, and O. Sander. The Distributed and Unified Numerics Environment, Version 2.4. Archive of Numerical Software, 4(100):13–29, 2016. M. Blatt, A. Burchardt, A. Dedner, Ch. Engwer, J. Fahlke, B. Flemisch, Ch. Gersbacher, C. Gräser, F. Gruber, Ch. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski, and O. Sander. The Distributed and Unified Numerics Environment, Version 2.4. Archive of Numerical Software, 4(100):13–29, 2016.
68.
Zurück zum Zitat P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika, 46:294–315, 2010. P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika, 46:294–315, 2010.
69.
Zurück zum Zitat Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The fenics project version 1.5. Archive of Numerical Software, 3(100), 2015. Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The fenics project version 1.5. Archive of Numerical Software, 3(100), 2015.
70.
Zurück zum Zitat Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl, Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann. preCICE—a fully parallel library for multi-physics surface coupling. Computers and Fluids, 141:250–258, 2016. Advances in Fluid-Structure Interaction. Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl, Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann. preCICE—a fully parallel library for multi-physics surface coupling. Computers and Fluids, 141:250–258, 2016. Advances in Fluid-Structure Interaction.
71.
Zurück zum Zitat Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009. Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.
Metadaten
Titel
Code Descriptions
verfasst von
Lars Bilke
Thomas Fischer
Dmitri Naumov
Daniel Pötschke
Karsten Rink
Amir Shoarian Sattari
Patrick Schmidt
Wenqing Wang
Keita Yoshioka
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-61909-1_7