Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.07.2020 | Ausgabe 5/2020

Cognitive Computation 5/2020

Cognitive Traffic Anomaly Prediction from GPS Trajectories Using Visible Outlier Indexes and Meshed Spatiotemporal Neighborhoods

Zeitschrift:
Cognitive Computation > Ausgabe 5/2020
Autoren:
Guang-Li Huang, Ke Deng, Jing He
Wichtige Hinweise

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The advancement of cognitive computing for traffic status understanding, powered by machine learning and data analytics, enables prediction of traffic anomalies from continuously generated big GPS trajectory data. Existing methods generally use traffic indicators such as traffic flows and speeds to detect anomalies, but they may over-identify anomalies while missing the critical ones. For example, they use historical anomalies to train the prediction model, but past anomalies may not be a perfect indication of future anomalies since anomalies are often rare. In this paper, we propose a novel cognitive approach, a Visible Outlier Indexes and Meshed Spatiotemporal Neighborhoods (VOI-MSN) method, to predict traffic anomalies from GPS trajectories. In the VOI-MSN method, two cognitive techniques are provided. The first is VOI, which measures the abnormal scores using overall samples and can be intuitively understood by humans. The second is MSN, which learns the dynamic impact range (i.e., spatiotemporal neighborhood) from historical trajectory data and provides a complete and exact analysis of the local traffic situation. It emulates human cognitive processing to adaptively judge the impact range by experience. The effectiveness of the proposed method is demonstrated using a massive trajectory dataset with 2.5 billion location records for 27,266 taxis, and it achieves higher precision and recall in predicting traffic anomalies than the counterpart methods. The VOI-MSN method achieves high accuracy and recall for predicting traffic anomalies. It outperforms traffic indicator–based (speed and traffic flow) methods, the fixed-size spatial neighborhood method and the causal network method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Cognitive Computation 5/2020 Zur Ausgabe

Premium Partner

    Bildnachweise