Skip to main content
Erschienen in: Glass and Ceramics 5-6/2019

23.10.2019 | SCIENCE FOR CERAMIC PRODUCTION

Cold Sintering of ZnO Ceramic in Water Medium: Test Demonstration

verfasst von: Yu. D. Ivakin, A. V. Smirnov, V. P. Tarasovskii, V. V. Rybal’chenko, A. A. Vasin, A. A. Kholodkova, M. N. Kormilitsin

Erschienen in: Glass and Ceramics | Ausgabe 5-6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A study of the compaction of zinc oxide powder under conditions reproducing the cold sintering process, described in 2017 by C. Randall’s research group in the USA, is presented. The obtained results show that a dense ceramic can be obtained from zinc oxide by pressing (pressing pressure p = 77 MPa) in a water medium at temperatures 220 – 250°C. It was found that in the course of pressing two processes occur under the indicated conditions — compaction and grain growth, which are characteristic for sintering. It is shown that the cold sintering process is reproducible. Further research in this direction is warranted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. N. Rahaman, Sintering of Ceramics, CRC Press (2007). M. N. Rahaman, Sintering of Ceramics, CRC Press (2007).
2.
Zurück zum Zitat R. K. Bordia, S. J. L. Kang, and E. A. Olevsky, “Current understanding and future research directions at the onset of the next century of sintering science and technology,” J. Am. Ceram. Soc., 100(6), 2314 – 2352 (2017).CrossRef R. K. Bordia, S. J. L. Kang, and E. A. Olevsky, “Current understanding and future research directions at the onset of the next century of sintering science and technology,” J. Am. Ceram. Soc., 100(6), 2314 – 2352 (2017).CrossRef
3.
Zurück zum Zitat Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” J. Mater. Sci., 41(3), 763 – 777 (2006).CrossRef Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” J. Mater. Sci., 41(3), 763 – 777 (2006).CrossRef
4.
Zurück zum Zitat Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric current activation of sintering: a review of the pulsed electric current sintering process,” J. Am. Ceram. Soc., 94(1), 1 – 19 (2011).CrossRef Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric current activation of sintering: a review of the pulsed electric current sintering process,” J. Am. Ceram. Soc., 94(1), 1 – 19 (2011).CrossRef
5.
Zurück zum Zitat J. Zhang, A. Zavaliangos, and J. R. Groza, “Field activated sintering techniques: a comparison and contrast,” P/M Sci. & Technol. Briefs, 5(3), 17 – 21 (2003). J. Zhang, A. Zavaliangos, and J. R. Groza, “Field activated sintering techniques: a comparison and contrast,” P/M Sci. & Technol. Briefs, 5(3), 17 – 21 (2003).
6.
Zurück zum Zitat M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: a review of fundamentals, advantages and applications,” J. Alloys Compd., 494(1 – 2), 175 – 189 (2010).CrossRef M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: a review of fundamentals, advantages and applications,” J. Alloys Compd., 494(1 – 2), 175 – 189 (2010).CrossRef
7.
Zurück zum Zitat D. S. B. Heidary, M. Lanagan, and C. A. Randall, “Contrasting energy efficiency in various ceramic sintering processes,” J. Europ. Ceram. Soc., 38(4), 1018 – 1029 (2018).CrossRef D. S. B. Heidary, M. Lanagan, and C. A. Randall, “Contrasting energy efficiency in various ceramic sintering processes,” J. Europ. Ceram. Soc., 38(4), 1018 – 1029 (2018).CrossRef
8.
Zurück zum Zitat K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, “Effective sintering aids for low-temperature sintering of AlN ceramics,” J. Mater. Res., 14(4), 1409 – 1417 (1999).CrossRef K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, “Effective sintering aids for low-temperature sintering of AlN ceramics,” J. Mater. Res., 14(4), 1409 – 1417 (1999).CrossRef
9.
Zurück zum Zitat J.-P. Maria, X. Kang, R. D. Floyd, et al., “Cold sintering: current status and prospects,” J. Mater. Res., 32(17), 3205 – 3218 (2017).CrossRef J.-P. Maria, X. Kang, R. D. Floyd, et al., “Cold sintering: current status and prospects,” J. Mater. Res., 32(17), 3205 – 3218 (2017).CrossRef
10.
Zurück zum Zitat J. Guo, H. Guo, A. L. Baker, et al., “Cold sintering: a paradigm shift for processing and integration of ceramics,” Angewandte Chemie Int. Ed., 55(38), 11457 – 11461 (2016).CrossRef J. Guo, H. Guo, A. L. Baker, et al., “Cold sintering: a paradigm shift for processing and integration of ceramics,” Angewandte Chemie Int. Ed., 55(38), 11457 – 11461 (2016).CrossRef
11.
Zurück zum Zitat J. Guo, S. S. Berbano, H. Guo, et al., “Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials,” Adv. Func. Mater., 26(39), 7115 – 7121 (2016).CrossRef J. Guo, S. S. Berbano, H. Guo, et al., “Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials,” Adv. Func. Mater., 26(39), 7115 – 7121 (2016).CrossRef
12.
Zurück zum Zitat A. Baker, et al., “Utilizing the cold sintering process for flexible–printable electroceramic device fabrication,” J. Am. Ceram. Soc., 99(10), 3202 – 3204 (2016).CrossRef A. Baker, et al., “Utilizing the cold sintering process for flexible–printable electroceramic device fabrication,” J. Am. Ceram. Soc., 99(10), 3202 – 3204 (2016).CrossRef
13.
Zurück zum Zitat A. Baker, H. Guo, J. Guo, and C. Randall, “Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics,” J. Am. Ceram. Soc., 99(11), 3489 – 3507 (2016).CrossRef A. Baker, H. Guo, J. Guo, and C. Randall, “Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics,” J. Am. Ceram. Soc., 99(11), 3489 – 3507 (2016).CrossRef
14.
Zurück zum Zitat A. Ndayishimiye, A. Largeteau, S. Mornet, et al., “Hydrothermal sintering for densification of silica. Evidence for the role of water,” J. Europ. Ceram. Soc., 38(4), 1860 – 1870 (2018).CrossRef A. Ndayishimiye, A. Largeteau, S. Mornet, et al., “Hydrothermal sintering for densification of silica. Evidence for the role of water,” J. Europ. Ceram. Soc., 38(4), 1860 – 1870 (2018).CrossRef
15.
Zurück zum Zitat J. Gonzalez-Julian, K. Neuhaus, M. Bernemann, et al., “Unveiling the mechanisms of cold sintering of ZnO at 250°C by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy,” Acta Mater., 144, 116 – 128 (2018).CrossRef J. Gonzalez-Julian, K. Neuhaus, M. Bernemann, et al., “Unveiling the mechanisms of cold sintering of ZnO at 250°C by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy,” Acta Mater., 144, 116 – 128 (2018).CrossRef
16.
Zurück zum Zitat B. Dargatz, J. Gonzalez-Julian, M. Bram, et al., “FAST/SPS sintering of nanocrystalline zinc oxide. Part I. Enhanced densification and formation of hydrogen-related defects in presence of adsorbed water,” J. Europ. Ceram. Soc., 36(5), 1207 – 1220 (2016).CrossRef B. Dargatz, J. Gonzalez-Julian, M. Bram, et al., “FAST/SPS sintering of nanocrystalline zinc oxide. Part I. Enhanced densification and formation of hydrogen-related defects in presence of adsorbed water,” J. Europ. Ceram. Soc., 36(5), 1207 – 1220 (2016).CrossRef
17.
Zurück zum Zitat B. Dargatz, J. Gonzalez-Julian, M. Bram, et al., “FAST/SPS sintering of nanocrystalline zinc oxide. Part II. Abnormal grain growth, texture and grain anisotropy,” J. Europ. Ceram. Soc., 36(5), 1221 – 1232 (2016).CrossRef B. Dargatz, J. Gonzalez-Julian, M. Bram, et al., “FAST/SPS sintering of nanocrystalline zinc oxide. Part II. Abnormal grain growth, texture and grain anisotropy,” J. Europ. Ceram. Soc., 36(5), 1221 – 1232 (2016).CrossRef
18.
Zurück zum Zitat S. Funahashi, J. Guo, H. Guo, et al., “Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics,” J. Am. Ceram. Soc., 100(2), 546 – 553 (2017).CrossRef S. Funahashi, J. Guo, H. Guo, et al., “Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics,” J. Am. Ceram. Soc., 100(2), 546 – 553 (2017).CrossRef
19.
Zurück zum Zitat D. Galusek, J. Sedláèek, and R. Riedel, “Al2O3–SiC composites prepared by warm pressing and sintering of an organosilicon polymer-coated alumina powder,” J. Europ. Ceram. Soc., 27(6), 2385 – 2392 (2007).CrossRef D. Galusek, J. Sedláèek, and R. Riedel, “Al2O3–SiC composites prepared by warm pressing and sintering of an organosilicon polymer-coated alumina powder,” J. Europ. Ceram. Soc., 27(6), 2385 – 2392 (2007).CrossRef
20.
Zurück zum Zitat H. Esaki, K. Ameyama, and M. Tokizane, “Warm pressing of cobalt base amorphous alloy powders,” Mater. Sci. Technol., 5(4), 369 – 376 (1989).CrossRef H. Esaki, K. Ameyama, and M. Tokizane, “Warm pressing of cobalt base amorphous alloy powders,” Mater. Sci. Technol., 5(4), 369 – 376 (1989).CrossRef
21.
Zurück zum Zitat X. Kang, R. Floyd, S. Lowum, et al., “Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature,” J. Am. Ceram. Soc., 102(8), 4459 – 4469 (2018).CrossRef X. Kang, R. Floyd, S. Lowum, et al., “Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature,” J. Am. Ceram. Soc., 102(8), 4459 – 4469 (2018).CrossRef
22.
Zurück zum Zitat T. K. Gupta and R. L Coble, “Sintering of ZnO: I, Densification and grain growth,” J. Am. Ceram. Soc., 51(9), 521 – 525 (1968).CrossRef T. K. Gupta and R. L Coble, “Sintering of ZnO: I, Densification and grain growth,” J. Am. Ceram. Soc., 51(9), 521 – 525 (1968).CrossRef
23.
Zurück zum Zitat T. Senda and R. C. Bradt, “Grain growth of zinc oxide during the sintering of zinc oxide–antimony oxide ceramics,” J. Am. Ceram. Soc., 74(6), 1296 – 1302 (1991).CrossRef T. Senda and R. C. Bradt, “Grain growth of zinc oxide during the sintering of zinc oxide–antimony oxide ceramics,” J. Am. Ceram. Soc., 74(6), 1296 – 1302 (1991).CrossRef
24.
Zurück zum Zitat A. Kh. Abduev, A. Sh. Asvarov, A. K. Akhmedov, et al., “Change of structure and stoichiometry of zinc oxide ceramic in the sintering process in the open atmosphere,” Pis’ma Zh. Tekh. Fiz., 41(3), 42 – 49 (2015). A. Kh. Abduev, A. Sh. Asvarov, A. K. Akhmedov, et al., “Change of structure and stoichiometry of zinc oxide ceramic in the sintering process in the open atmosphere,” Pis’ma Zh. Tekh. Fiz., 41(3), 42 – 49 (2015).
25.
Zurück zum Zitat M. Matsuoka, T. Masuyama, and Y. Iida, “Voltage nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide,” Jpn. J. Appl. Phys., 8(10), 1275 (1969).CrossRef M. Matsuoka, T. Masuyama, and Y. Iida, “Voltage nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide,” Jpn. J. Appl. Phys., 8(10), 1275 (1969).CrossRef
26.
Zurück zum Zitat L. Wang, Y. Kang, X. Liu, et al., “ZnO nanorod gas sensor for ethanol detection,” Sensors and Actuators B: Chemical, 162(1), 237 – 243 (2012).CrossRef L. Wang, Y. Kang, X. Liu, et al., “ZnO nanorod gas sensor for ethanol detection,” Sensors and Actuators B: Chemical, 162(1), 237 – 243 (2012).CrossRef
27.
Zurück zum Zitat Z. L.Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, 312(5771), 242 – 246 (2006).CrossRef Z. L.Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, 312(5771), 242 – 246 (2006).CrossRef
28.
Zurück zum Zitat M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, “High-temperature thermoelectric properties of (Zn1–xAlx)O,” J. Appl. Phys.,79(3), 1816 – 1818 (1996). M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, “High-temperature thermoelectric properties of (Zn1–xAlx)O,” J. Appl. Phys.,79(3), 1816 – 1818 (1996).
29.
Zurück zum Zitat Yu. D. Ivakin and M. N. Danchevskaya, “Analysis of recrystallization of fine-crystalline corundum in supercritical water medium with the aid of a log-normal particle size distribution function,” Sverkhkrit. Fluidy: Teor. Prakt., 13(1), 4 – 15 (2018). Yu. D. Ivakin and M. N. Danchevskaya, “Analysis of recrystallization of fine-crystalline corundum in supercritical water medium with the aid of a log-normal particle size distribution function,” Sverkhkrit. Fluidy: Teor. Prakt., 13(1), 4 – 15 (2018).
30.
Zurück zum Zitat Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Murav’eva, “Recrystallization of zinc oxide in sub- and supercritical water medium,” Sverkhkrit. Fluidy: Teor. Prakt., 13(4), 74 – 93 (2018). Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Murav’eva, “Recrystallization of zinc oxide in sub- and supercritical water medium,” Sverkhkrit. Fluidy: Teor. Prakt., 13(4), 74 – 93 (2018).
Metadaten
Titel
Cold Sintering of ZnO Ceramic in Water Medium: Test Demonstration
verfasst von
Yu. D. Ivakin
A. V. Smirnov
V. P. Tarasovskii
V. V. Rybal’chenko
A. A. Vasin
A. A. Kholodkova
M. N. Kormilitsin
Publikationsdatum
23.10.2019
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 5-6/2019
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-019-00167-6

Weitere Artikel der Ausgabe 5-6/2019

Glass and Ceramics 5-6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.