Skip to main content
Erschienen in: Quantum Information Processing 2/2017

01.02.2017

Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation

verfasst von: Guo-Zhu Song, Guo-Jian Yang, Mei Zhang

Erschienen in: Quantum Information Processing | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present some compact circuits for a deterministic quantum computing on the hybrid photon–atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)ADSCrossRefMATH Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)ADSCrossRefMATH
2.
3.
Zurück zum Zitat Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRef Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRef
4.
Zurück zum Zitat Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADSCrossRef Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADSCrossRef
5.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRef Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRef
6.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)ADSCrossRef Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)ADSCrossRef
7.
Zurück zum Zitat Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phy. Rev. A 90, 052310 (2014)ADSCrossRef Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phy. Rev. A 90, 052310 (2014)ADSCrossRef
8.
Zurück zum Zitat Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)ADSCrossRef Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)ADSCrossRef
9.
Zurück zum Zitat Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computing with coupled quantum dots. Sci. Rep. 4, 4623 (2014)ADS Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computing with coupled quantum dots. Sci. Rep. 4, 4623 (2014)ADS
10.
Zurück zum Zitat Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)ADSCrossRef Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)ADSCrossRef
11.
Zurück zum Zitat Wei, H.R., Deng, F.G., Long, G.L.: Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 24, 18619–18630 (2016)ADSCrossRef Wei, H.R., Deng, F.G., Long, G.L.: Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 24, 18619–18630 (2016)ADSCrossRef
12.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRef Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRef
13.
Zurück zum Zitat Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)ADSCrossRef Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)ADSCrossRef
14.
Zurück zum Zitat Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)ADSCrossRef Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)ADSCrossRef
15.
Zurück zum Zitat Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)ADSCrossRef Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)ADSCrossRef
16.
Zurück zum Zitat Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADSCrossRef Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADSCrossRef
17.
Zurück zum Zitat Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)ADSCrossRef Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)ADSCrossRef
18.
Zurück zum Zitat Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature (London) 425, 941–944 (2003)ADSCrossRef Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature (London) 425, 941–944 (2003)ADSCrossRef
19.
Zurück zum Zitat Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature (London) 453, 1031–1042 (2008)ADSCrossRef Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature (London) 453, 1031–1042 (2008)ADSCrossRef
20.
Zurück zum Zitat Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)ADSCrossRef Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)ADSCrossRef
21.
Zurück zum Zitat Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (1995)ADSCrossRef Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (1995)ADSCrossRef
23.
Zurück zum Zitat Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84 (2003)MathSciNetMATH Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84 (2003)MathSciNetMATH
24.
Zurück zum Zitat Liang, L.M., Li, C.Z.: Realization of quantum SWAP gate between flying and stationary qubits. Phys. Rev. A 72, 024303 (2005)ADSCrossRef Liang, L.M., Li, C.Z.: Realization of quantum SWAP gate between flying and stationary qubits. Phys. Rev. A 72, 024303 (2005)ADSCrossRef
25.
Zurück zum Zitat Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)MathSciNetCrossRefMATH Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRef Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRef
27.
Zurück zum Zitat Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)ADSCrossRef Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)ADSCrossRef
28.
Zurück zum Zitat Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)ADSCrossRef Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)ADSCrossRef
29.
Zurück zum Zitat Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)ADSCrossRef Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)ADSCrossRef
30.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)MATH
31.
Zurück zum Zitat Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301 (2004)ADSCrossRef Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301 (2004)ADSCrossRef
32.
Zurück zum Zitat Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96 (2015)CrossRef Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96 (2015)CrossRef
33.
Zurück zum Zitat Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)CrossRef Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)CrossRef
35.
Zurück zum Zitat Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)ADSCrossRef Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)ADSCrossRef
36.
Zurück zum Zitat Xu, G.F., Long, G.L.: Protecting geometric gates by dynamical decoupling. Phys. Rev. A 90, 022323 (2014)ADSCrossRef Xu, G.F., Long, G.L.: Protecting geometric gates by dynamical decoupling. Phys. Rev. A 90, 022323 (2014)ADSCrossRef
37.
Zurück zum Zitat Xu, G.F., Long, G.L.: Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci. Rep. 4, 6814 (2014)ADSCrossRef Xu, G.F., Long, G.L.: Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci. Rep. 4, 6814 (2014)ADSCrossRef
38.
Zurück zum Zitat Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRef Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRef
39.
Zurück zum Zitat Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)ADSCrossRef Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)ADSCrossRef
40.
Zurück zum Zitat Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)ADSCrossRef Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)ADSCrossRef
41.
Zurück zum Zitat Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with hot trapped atoms. Phys. Rev. A 67, 032305 (2003)ADSCrossRef Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with hot trapped atoms. Phys. Rev. A 67, 032305 (2003)ADSCrossRef
42.
Zurück zum Zitat Cho, J., Lee, H.W.: Generation of atomic cluster states through the cavity input–output process. Phys. Rev. Lett. 95, 160501 (2005)ADSCrossRef Cho, J., Lee, H.W.: Generation of atomic cluster states through the cavity input–output process. Phys. Rev. Lett. 95, 160501 (2005)ADSCrossRef
43.
Zurück zum Zitat Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)ADSCrossRef Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)ADSCrossRef
44.
Zurück zum Zitat Wei, H., Deng, Z.J., Zhang, X.L., Feng, M.: Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys. Rev. A 76, 054304 (2007)ADSCrossRef Wei, H., Deng, Z.J., Zhang, X.L., Feng, M.: Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys. Rev. A 76, 054304 (2007)ADSCrossRef
45.
Zurück zum Zitat Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRef Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)ADSCrossRef
46.
Zurück zum Zitat Wang, C., Zhang, Y., Jiao, R.Z., Jin, G.S.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252–19260 (2013)ADSCrossRef Wang, C., Zhang, Y., Jiao, R.Z., Jin, G.S.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252–19260 (2013)ADSCrossRef
47.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)ADSCrossRef Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)ADSCrossRef
48.
Zurück zum Zitat Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dotCmicrocavity coupled system. Phys. Rev. A 87, 062337 (2013)ADSCrossRef Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dotCmicrocavity coupled system. Phys. Rev. A 87, 062337 (2013)ADSCrossRef
49.
Zurück zum Zitat Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489 (2014)ADSCrossRef Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489 (2014)ADSCrossRef
50.
Zurück zum Zitat Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature (London) 508, 237–240 (2014)ADSCrossRef Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature (London) 508, 237–240 (2014)ADSCrossRef
51.
Zurück zum Zitat Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)ADSCrossRef Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)ADSCrossRef
52.
Zurück zum Zitat Song, L.C., Xia, Y., Jie Song, J.: Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Inform. Process. 14, 511–529 (2015)ADSMathSciNetCrossRefMATH Song, L.C., Xia, Y., Jie Song, J.: Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Inform. Process. 14, 511–529 (2015)ADSMathSciNetCrossRefMATH
53.
Zurück zum Zitat Peng, Z.H., Kuang, L.M., Zou, J., Zhang, Y.Q., Liu, X.J.: Quantum controlled-not gate in the bad cavity regime. Quantum Inform. Process. 14, 2833–2846 (2015)ADSMathSciNetCrossRefMATH Peng, Z.H., Kuang, L.M., Zou, J., Zhang, Y.Q., Liu, X.J.: Quantum controlled-not gate in the bad cavity regime. Quantum Inform. Process. 14, 2833–2846 (2015)ADSMathSciNetCrossRefMATH
54.
Zurück zum Zitat Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inform. Process. 15, 1485–1498 (2016)ADSMathSciNetCrossRefMATH Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inform. Process. 15, 1485–1498 (2016)ADSMathSciNetCrossRefMATH
55.
Zurück zum Zitat Wang, T.J., Wang, C.: Parallel quantum computing teleportation for spin qubits in quantum dot and microcavity coupled system. IEEE J. Sel. Top. Quantum Electron. 21(3), 6500107 (2015) Wang, T.J., Wang, C.: Parallel quantum computing teleportation for spin qubits in quantum dot and microcavity coupled system. IEEE J. Sel. Top. Quantum Electron. 21(3), 6500107 (2015)
56.
Zurück zum Zitat Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Solano, E., Neven, H., Martinis, J.M.: Digitized adiabatic quantum computing with a superconducting circuit. Nature (London) 534, 222–226 (2016)ADSCrossRef Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Solano, E., Neven, H., Martinis, J.M.: Digitized adiabatic quantum computing with a superconducting circuit. Nature (London) 534, 222–226 (2016)ADSCrossRef
57.
Zurück zum Zitat Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRef Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRef
58.
Zurück zum Zitat Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)ADSCrossRef Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)ADSCrossRef
59.
Zurück zum Zitat Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)ADSCrossRef Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)ADSCrossRef
60.
Zurück zum Zitat Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon \(\sqrt{SWAP}\) gate using a system. Phys. Rev. A 82, 010301 (2010)ADSCrossRef Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon \(\sqrt{SWAP}\) gate using a system. Phys. Rev. A 82, 010301 (2010)ADSCrossRef
61.
Zurück zum Zitat Wang, T.J., Zhang, Y., Wang, C.: Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Phys. Lett. 11, 025203 (2014)ADSCrossRef Wang, T.J., Zhang, Y., Wang, C.: Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Phys. Lett. 11, 025203 (2014)ADSCrossRef
62.
Zurück zum Zitat Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)ADSMathSciNetCrossRefMATH Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)ADSMathSciNetCrossRefMATH
63.
Zurück zum Zitat Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRef Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRef
64.
Zurück zum Zitat Monroe, C.: Quantum information processing with atoms and photons. Nature (London) 416, 238 (2002)ADSCrossRef Monroe, C.: Quantum information processing with atoms and photons. Nature (London) 416, 238 (2002)ADSCrossRef
65.
Zurück zum Zitat Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82, 052329 (2010)ADSCrossRef Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82, 052329 (2010)ADSCrossRef
66.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Compact implementation of the \((SWAP)^a\) gate on diamond nitrogen-vacancy centers coupled to resonators. Quantum Inf. Process. 14, 465–477 (2015)ADSCrossRefMATH Wei, H.R., Deng, F.G.: Compact implementation of the \((SWAP)^a\) gate on diamond nitrogen-vacancy centers coupled to resonators. Quantum Inf. Process. 14, 465–477 (2015)ADSCrossRefMATH
67.
Zurück zum Zitat Fortier, K.M., Kim, Y., Gibbons, M.J., Ahmadi, P., Chapman, M.S.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)ADSCrossRef Fortier, K.M., Kim, Y., Gibbons, M.J., Ahmadi, P., Chapman, M.S.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)ADSCrossRef
68.
Zurück zum Zitat Wilk, T., Webster, S.C., Kuhn, A., Rempe, G.: Single-atom single-photon quantum interface. Science 317, 488 (2007)ADSCrossRef Wilk, T., Webster, S.C., Kuhn, A., Rempe, G.: Single-atom single-photon quantum interface. Science 317, 488 (2007)ADSCrossRef
69.
Zurück zum Zitat Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)ADSCrossRef Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)ADSCrossRef
70.
Zurück zum Zitat Siyushev, P., Stein, G., Wrachtrup, J., Gerhardt, I.: Molecular photons interfaced with alkali atoms. Nature (London) 509, 66 (2014)ADSCrossRef Siyushev, P., Stein, G., Wrachtrup, J., Gerhardt, I.: Molecular photons interfaced with alkali atoms. Nature (London) 509, 66 (2014)ADSCrossRef
72.
Zurück zum Zitat An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)ADSCrossRef An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)ADSCrossRef
73.
Zurück zum Zitat Bastos, W.P., Cardoso, W.B., Avelar, A.T., de Almeida, N.G., Baseia, B.: Controlled teleportation via photonic Faraday rotations in low-Q cavities. Quantum Inf. Process. 11, 1867 (2012)ADSMathSciNetCrossRefMATH Bastos, W.P., Cardoso, W.B., Avelar, A.T., de Almeida, N.G., Baseia, B.: Controlled teleportation via photonic Faraday rotations in low-Q cavities. Quantum Inf. Process. 11, 1867 (2012)ADSMathSciNetCrossRefMATH
74.
Zurück zum Zitat Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)ADSCrossRef Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)ADSCrossRef
75.
Zurück zum Zitat Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)ADSCrossRefMATH Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)ADSCrossRefMATH
76.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30, 678 (2013)ADSCrossRef Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30, 678 (2013)ADSCrossRef
77.
Zurück zum Zitat Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)CrossRefMATH Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)CrossRefMATH
78.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671–17685 (2013)ADSCrossRef Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671–17685 (2013)ADSCrossRef
79.
Zurück zum Zitat Dayan, B., Parkins, A.S., Takao, Aoki, Ostby, E.P., Vahala, K.J., Kimble, Hj: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)ADSCrossRef Dayan, B., Parkins, A.S., Takao, Aoki, Ostby, E.P., Vahala, K.J., Kimble, Hj: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)ADSCrossRef
80.
Zurück zum Zitat Chiesa, A., Gerace, D., Troiani, F., Amoretti, G., Santini, P., Carretta, S.: Robustness of quantum gates with hybrid spin-photon qubits in superconducting resonators. Phys. Rev. A 89, 052308 (2014)ADSCrossRef Chiesa, A., Gerace, D., Troiani, F., Amoretti, G., Santini, P., Carretta, S.: Robustness of quantum gates with hybrid spin-photon qubits in superconducting resonators. Phys. Rev. A 89, 052308 (2014)ADSCrossRef
81.
Zurück zum Zitat Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRef Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRef
82.
Zurück zum Zitat Carretta, S., Chiesa, A., Troiani, F., Gerace, D., Amoretti, G., Santini, P.: Quantum information processing with hybrid spin-photon qubit encoding. Phys. Rev. Lett. 111, 110501 (2013)ADSCrossRef Carretta, S., Chiesa, A., Troiani, F., Gerace, D., Amoretti, G., Santini, P.: Quantum information processing with hybrid spin-photon qubit encoding. Phys. Rev. Lett. 111, 110501 (2013)ADSCrossRef
83.
Zurück zum Zitat Luo, M.X., Ma, S.Y., Chen, X.B., Wang, X.J.: Hybrid Toffoli gate on photons and quantum spins. Sci. Rep. 5, 16716 (2015)ADSCrossRef Luo, M.X., Ma, S.Y., Chen, X.B., Wang, X.J.: Hybrid Toffoli gate on photons and quantum spins. Sci. Rep. 5, 16716 (2015)ADSCrossRef
84.
Zurück zum Zitat Pritchard, J.D., Isaacs, J.A., Beck, M.A., McDermott, R., Saffman, M.: Hybrid atom–photon quantum gate in a superconducting microwave resonator. Phys. Rev. A 89, 010301(R) (2014)ADSCrossRef Pritchard, J.D., Isaacs, J.A., Beck, M.A., McDermott, R., Saffman, M.: Hybrid atom–photon quantum gate in a superconducting microwave resonator. Phys. Rev. A 89, 010301(R) (2014)ADSCrossRef
85.
Zurück zum Zitat Wang, G.Y., Liu, Q., Wei, H.R., Li, T., Ai, Q., Deng, F.G.: Universal quantum gates for photon–atom hybrid systems assisted by bad cavities. Sci. Rep. 6, 24183 (2016)ADSCrossRef Wang, G.Y., Liu, Q., Wei, H.R., Li, T., Ai, Q., Deng, F.G.: Universal quantum gates for photon–atom hybrid systems assisted by bad cavities. Sci. Rep. 6, 24183 (2016)ADSCrossRef
Metadaten
Titel
Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation
verfasst von
Guo-Zhu Song
Guo-Jian Yang
Mei Zhang
Publikationsdatum
01.02.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1478-6

Weitere Artikel der Ausgabe 2/2017

Quantum Information Processing 2/2017 Zur Ausgabe

Neuer Inhalt