Skip to main content
Erschienen in: Environmental Earth Sciences 5/2015

01.03.2015 | Original Article

Comparative study of electricity production and treatment of different wastewater using microbial fuel cell (MFC)

verfasst von: J. S. Sudarsan, K. Prasana, S. Nithiyanantham, K. Renganathan

Erschienen in: Environmental Earth Sciences | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of electricity. Salt bridge is the economic alternative to highly priced proton-exchange membrane in the construction of an MFC. By altering the concentration of agarose in the fabrication of salt bridge, the performance of various double-chambered MFCs was observed using hostel sewage wastewater as the substrate. Agarose concentration ranging from 7 to 12 % was used for the study, and optimum concentration was observed to be 10 % as it showed maximum current production of 0.97 mA at a voltage of 0.95 V after 528 h of operation from the time of the initial experimental setup. The maximum power density obtained was 78.25 mW/m2 and the corresponding current density was 82.37 mA/m2. A 75.9 % reduction in chemical oxygen demand was obtained in 10 % agarose concentration salt-bridge MFC. All experiments were performed in triplicate and the results are discussed in this research paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltage and currents using stacked microbial fuel cells. Env Sci Tech 40:3388–3394CrossRef Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltage and currents using stacked microbial fuel cells. Env Sci Tech 40:3388–3394CrossRef
Zurück zum Zitat Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Biores Tech 101(2):469–475CrossRef Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Biores Tech 101(2):469–475CrossRef
Zurück zum Zitat Allen RM, Bennetto HP (1993) Microbial fuel cells: electricity production from carbohydrates. Appl Biochem Biotech 39(40):27–40CrossRef Allen RM, Bennetto HP (1993) Microbial fuel cells: electricity production from carbohydrates. Appl Biochem Biotech 39(40):27–40CrossRef
Zurück zum Zitat Andrew DE, Clescenri LS, Breenberg AE (1995) Standard method for the examination of water and wastewater, 19th edn. APHA, AWW (American Water Work Association), WEF (Water Environment Federation), USA, pp 5–14 Andrew DE, Clescenri LS, Breenberg AE (1995) Standard method for the examination of water and wastewater, 19th edn. APHA, AWW (American Water Work Association), WEF (Water Environment Federation), USA, pp 5–14
Zurück zum Zitat Balat M (2009) Microbial fuel cells as an alternative energy option. Energy Sources, Part A: Recovery, Utiliz Env Effec 32:26–35CrossRef Balat M (2009) Microbial fuel cells as an alternative energy option. Energy Sources, Part A: Recovery, Utiliz Env Effec 32:26–35CrossRef
Zurück zum Zitat Bond DR, Lovley DR (2003) Electricity production by Geo bacterial sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555CrossRef Bond DR, Lovley DR (2003) Electricity production by Geo bacterial sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555CrossRef
Zurück zum Zitat Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485CrossRef Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485CrossRef
Zurück zum Zitat Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosen Bioelecs 21:2015–2045CrossRef Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosen Bioelecs 21:2015–2045CrossRef
Zurück zum Zitat Chae KJ, Choi M, Folusho F, Park AW, Chang IS, Kim S (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 22(1):169–176. doi:10.1021/ef700308u Chae KJ, Choi M, Folusho F, Park AW, Chang IS, Kim S (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 22(1):169–176. doi:10.​1021/​ef700308u
Zurück zum Zitat Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2003) Continuous determination of biochemical oxygen demand using a microbial fuel cell type novel biosensor. Biosens Bioelectron 19:607–613CrossRef Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2003) Continuous determination of biochemical oxygen demand using a microbial fuel cell type novel biosensor. Biosens Bioelectron 19:607–613CrossRef
Zurück zum Zitat Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Biores Tech 102:4468–4473CrossRef Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Biores Tech 102:4468–4473CrossRef
Zurück zum Zitat Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363CrossRef Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363CrossRef
Zurück zum Zitat Jang JK, Phama, Chang S, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less. Microbial fuel cell Pro Biochem 39:1007–1012 Jang JK, Phama, Chang S, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less. Microbial fuel cell Pro Biochem 39:1007–1012
Zurück zum Zitat Kim JR, Min B, Logan B (2005) Evaluation of procedure to acclimate a microbial fuel cell for electricity production. Appl Microbio Biotech 68(2005):23–30CrossRef Kim JR, Min B, Logan B (2005) Evaluation of procedure to acclimate a microbial fuel cell for electricity production. Appl Microbio Biotech 68(2005):23–30CrossRef
Zurück zum Zitat Kuntke P (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Resrch 46(8):2627–2636CrossRef Kuntke P (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Resrch 46(8):2627–2636CrossRef
Zurück zum Zitat Li W-W, Yu H-Q, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924CrossRef Li W-W, Yu H-Q, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924CrossRef
Zurück zum Zitat Liu H (2004) Production of electricity during wastewater treatment using a single-chamber microbial fuel cell. Env Sci Tech 38:2281–2285CrossRef Liu H (2004) Production of electricity during wastewater treatment using a single-chamber microbial fuel cell. Env Sci Tech 38:2281–2285CrossRef
Zurück zum Zitat Liu Y, Liu H, Wang C, Hou S-X, Yang N (2013) Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene. Cathode 47(23):13889–13895 Liu Y, Liu H, Wang C, Hou S-X, Yang N (2013) Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene. Cathode 47(23):13889–13895
Zurück zum Zitat Mohan Y, Manoj S, Kumar M, Das D (2008) Electricity generation using microbial fuel cells. Inter J Hyd Engy 33:423–426CrossRef Mohan Y, Manoj S, Kumar M, Das D (2008) Electricity generation using microbial fuel cells. Inter J Hyd Engy 33:423–426CrossRef
Zurück zum Zitat Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biores Tech 97:621–627 Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biores Tech 97:621–627
Zurück zum Zitat Qing W (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Biores Tech 100(18):4171–4175CrossRef Qing W (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Biores Tech 100(18):4171–4175CrossRef
Zurück zum Zitat Rabaey KA (2003) Microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotech Lett 25:1531–1535CrossRef Rabaey KA (2003) Microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotech Lett 25:1531–1535CrossRef
Zurück zum Zitat Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Env Microbio 70:5373–5382CrossRef Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Env Microbio 70:5373–5382CrossRef
Zurück zum Zitat Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Env Sci Tech 39:3401–3408CrossRef Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Env Sci Tech 39:3401–3408CrossRef
Zurück zum Zitat Velasquez-Orta SB, Head IM, Curtis TP, Scott K (2011) Factors affecting current production in microbial fuel cells using different industrial wastewaters. Biores Tech 102:5105–5112CrossRef Velasquez-Orta SB, Head IM, Curtis TP, Scott K (2011) Factors affecting current production in microbial fuel cells using different industrial wastewaters. Biores Tech 102:5105–5112CrossRef
Zurück zum Zitat Yavari Z (2013) Electricity generation from synthetic wastewater treatment in microbial fuel cell. Qom Uni Med Sci Jour 6(4):100–105 Yavari Z (2013) Electricity generation from synthetic wastewater treatment in microbial fuel cell. Qom Uni Med Sci Jour 6(4):100–105
Metadaten
Titel
Comparative study of electricity production and treatment of different wastewater using microbial fuel cell (MFC)
verfasst von
J. S. Sudarsan
K. Prasana
S. Nithiyanantham
K. Renganathan
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 5/2015
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-014-3590-1

Weitere Artikel der Ausgabe 5/2015

Environmental Earth Sciences 5/2015 Zur Ausgabe