Skip to main content

2021 | OriginalPaper | Buchkapitel

Comparison of Gaseous and Liquid Fuel Cells for Automotive Applications

verfasst von : A. Thirkell, R. Chen

Erschienen in: Advances in Automotive Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Elevating pressure on the automotive industry to significantly reduce harmful emissions has led to an increased focus on the research and development of alternative, ultra-low emission power sources, including batteries and fuel cells. To better understand how fuel cell systems could be integrated into automotive systems, it would be important to draw comparisons between different technologies. Two key fuel cell segments are compared for their suitability in automotive applications, gaseous and liquid fed fuel cells. Comparisons showed the inherent advantages and disadvantages of both technologies. Gaseous fuel cells, such as the increasingly popular polymer electrolyte membrane fuel cell, utilise hydrogen as a fuel and typically have very high-power densities. Liquid fuel cells are by comparison, less common. One up-and-coming technology is the direct methanol fuel cell. For use in automotive applications, this type of fuel cell shows potential as the storage of methanol is very similar to traditional internal combustion fuels such as petrol and diesel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat European Commission (2018) European Commission COM (2017) 676, Brussels European Commission (2018) European Commission COM (2017) 676, Brussels
2.
Zurück zum Zitat Allen MR et al (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166CrossRef Allen MR et al (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166CrossRef
3.
Zurück zum Zitat Graham-Rowe E et al (2012) Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: a qualitative analysis of responses and evaluations. Transp Res Part A Policy Pract 46(1):140–153CrossRef Graham-Rowe E et al (2012) Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: a qualitative analysis of responses and evaluations. Transp Res Part A Policy Pract 46(1):140–153CrossRef
4.
Zurück zum Zitat Automotive Council and Advanced Propulsion Centre (2018) The roadmap report—Towards 2040: a guide to automotive propulsion technologies Automotive Council and Advanced Propulsion Centre (2018) The roadmap report—Towards 2040: a guide to automotive propulsion technologies
6.
Zurück zum Zitat Demirdöven N, Deutch J (2004) Hybrid cars now, fuel cell cars later. Sci Mag 305:974–976 Demirdöven N, Deutch J (2004) Hybrid cars now, fuel cell cars later. Sci Mag 305:974–976
10.
Zurück zum Zitat Fernández R, Caraballo S, Cilleruelo F, Lozano J (2018) Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renew Sustain Energy Rev 81(April 2017):655–668 Fernández R, Caraballo S, Cilleruelo F, Lozano J (2018) Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renew Sustain Energy Rev 81(April 2017):655–668
11.
Zurück zum Zitat Fernandez R, Cilleruelo F, Martinez I (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell-based range extender system. Int J Hydrogen Energy 41:4808–4819CrossRef Fernandez R, Cilleruelo F, Martinez I (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell-based range extender system. Int J Hydrogen Energy 41:4808–4819CrossRef
12.
Zurück zum Zitat Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef
13.
Zurück zum Zitat Jensen HCB, Schaltz E, Koustrup PS, Andreasen SJ, Kær SK (2013) Evaluation of fuel-cell range extender impact on hybrid electrical vehicle performance. IEEE Trans Veh Technol 62(1):50–60CrossRef Jensen HCB, Schaltz E, Koustrup PS, Andreasen SJ, Kær SK (2013) Evaluation of fuel-cell range extender impact on hybrid electrical vehicle performance. IEEE Trans Veh Technol 62(1):50–60CrossRef
14.
Zurück zum Zitat Aharon I, Kuperman A (2011) Topological overview of powertrains for battery-powered vehicles with range extenders. IEEE Trans Power Electron 26(3):868–876CrossRef Aharon I, Kuperman A (2011) Topological overview of powertrains for battery-powered vehicles with range extenders. IEEE Trans Power Electron 26(3):868–876CrossRef
15.
Zurück zum Zitat Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Hoboken Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Hoboken
16.
Zurück zum Zitat O’Hayre R, Cha S-W, Colella W, Prinz FB (2016) Fuel cell fundamentals, 3rd edn. Wiley, Hoboken O’Hayre R, Cha S-W, Colella W, Prinz FB (2016) Fuel cell fundamentals, 3rd edn. Wiley, Hoboken
17.
Zurück zum Zitat Barbir F (2005) PEM fuel cells theory and practice. Elsevier Academic Press, Cambridge Barbir F (2005) PEM fuel cells theory and practice. Elsevier Academic Press, Cambridge
18.
Zurück zum Zitat Larminie J, Dicks A (2000) Fuel cell systems explained, 1st edn. Wiley, Hoboken Larminie J, Dicks A (2000) Fuel cell systems explained, 1st edn. Wiley, Hoboken
19.
Zurück zum Zitat Thirkell A, Chen R, Harrington I (2017) A fuel cell system sizing tool based on current production aircraft. SAE Tech Pap Part F1298 Thirkell A, Chen R, Harrington I (2017) A fuel cell system sizing tool based on current production aircraft. SAE Tech Pap Part F1298
20.
Zurück zum Zitat Tavares S (2015) Aerospace engineering pocket reference. Taylor & Francis Tavares S (2015) Aerospace engineering pocket reference. Taylor & Francis
28.
Zurück zum Zitat Intelligent Energy Ltd. (2016) Ultra lightweight fuel cell systems Intelligent Energy Ltd. (2016) Ultra lightweight fuel cell systems
30.
Zurück zum Zitat Kumar L, Jain S (2014) Electric propulsion system for electric vehicular technology: a review. Renew Sustain Energy Rev 29:924–940CrossRef Kumar L, Jain S (2014) Electric propulsion system for electric vehicular technology: a review. Renew Sustain Energy Rev 29:924–940CrossRef
31.
Zurück zum Zitat Wang L, Husar A, Zhou T, Liu H (2003) A parametric study of PEM fuel cell performances. Int J Hydrogen Energy 28(11):1263–1272CrossRef Wang L, Husar A, Zhou T, Liu H (2003) A parametric study of PEM fuel cell performances. Int J Hydrogen Energy 28(11):1263–1272CrossRef
32.
Zurück zum Zitat Amirinejad M, Rowshanzamir S, Eikani MH (2006) Effects of operating parameters on performance of a proton exchange membrane fuel cell. J Power Sources 161(2):872–875CrossRef Amirinejad M, Rowshanzamir S, Eikani MH (2006) Effects of operating parameters on performance of a proton exchange membrane fuel cell. J Power Sources 161(2):872–875CrossRef
33.
Zurück zum Zitat Ong BC, Kamarudin SK, Basri S (2017) Direct liquid fuel cells: A review. Int J Hydrogen Energy 42(15):10142–10157CrossRef Ong BC, Kamarudin SK, Basri S (2017) Direct liquid fuel cells: A review. Int J Hydrogen Energy 42(15):10142–10157CrossRef
34.
Zurück zum Zitat McGrath KM, Surya Prakash GK, Olah GA (2004) Direct methanol fuel cell. J Ind Eng Chem 10(7):1063–1080 McGrath KM, Surya Prakash GK, Olah GA (2004) Direct methanol fuel cell. J Ind Eng Chem 10(7):1063–1080
35.
Zurück zum Zitat Kang K, Park S, Gwak G, Ji H, Ju H (2012) Development of a lightweight 200 W direct methanol fuel cell stack for UAV applications and study of its operating characteristics (II). Korean Hydrog New Energy Soc 23(3):243–249CrossRef Kang K, Park S, Gwak G, Ji H, Ju H (2012) Development of a lightweight 200 W direct methanol fuel cell stack for UAV applications and study of its operating characteristics (II). Korean Hydrog New Energy Soc 23(3):243–249CrossRef
43.
Zurück zum Zitat Ross DK (2006) Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10):1084–1089CrossRef Ross DK (2006) Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10):1084–1089CrossRef
44.
Zurück zum Zitat Gray EM (2007) Hydrogen storage—status and prospects. Adv Appl Ceram 106(1–2):25–28CrossRef Gray EM (2007) Hydrogen storage—status and prospects. Adv Appl Ceram 106(1–2):25–28CrossRef
45.
Zurück zum Zitat Ahluwalia RK, Peng JK (2008) Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications. Int J Hydrogen Energy 33(17):4622–4633CrossRef Ahluwalia RK, Peng JK (2008) Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications. Int J Hydrogen Energy 33(17):4622–4633CrossRef
46.
Zurück zum Zitat Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications Nature 414(6861):353–358 Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications Nature 414(6861):353–358
47.
Zurück zum Zitat Zuttel A (2003) Materials for hydrogen storage. Mater Today 6(9):24–33CrossRef Zuttel A (2003) Materials for hydrogen storage. Mater Today 6(9):24–33CrossRef
48.
Zurück zum Zitat Liu J, Zhao T, Chen R, Wong C (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem Commun 7:288–294CrossRef Liu J, Zhao T, Chen R, Wong C (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem Commun 7:288–294CrossRef
49.
Zurück zum Zitat Han J, Liu H (2007) Real time measurements of methanol crossover in a DMFC. J Power Sources 164(1):166–173CrossRef Han J, Liu H (2007) Real time measurements of methanol crossover in a DMFC. J Power Sources 164(1):166–173CrossRef
50.
Zurück zum Zitat Colpan CO, Ouellette D (2018) Three dimensional modeling of a FE-DMFC short-stack. Int J Hydrogen Energy 43(11):5951–5960CrossRef Colpan CO, Ouellette D (2018) Three dimensional modeling of a FE-DMFC short-stack. Int J Hydrogen Energy 43(11):5951–5960CrossRef
51.
Zurück zum Zitat Ko J, Lee G, Choi Y, Chippar P, Kang K, Ju H (2011) Comparison of numerical simulation results with experimental current density and methanol-crossover data for direct methanol fuel cells. J Power Sources 196(3):935–945CrossRef Ko J, Lee G, Choi Y, Chippar P, Kang K, Ju H (2011) Comparison of numerical simulation results with experimental current density and methanol-crossover data for direct methanol fuel cells. J Power Sources 196(3):935–945CrossRef
52.
Zurück zum Zitat Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Prog Energy Combust Sci 35(3):275–292CrossRef Zhao TS, Xu C, Chen R, Yang WW (2009) Mass transport phenomena in direct methanol fuel cells. Prog Energy Combust Sci 35(3):275–292CrossRef
53.
Zurück zum Zitat Nakagawa N, Tsujiguchi T, Sakurai S, Aoki R (2012) Performance of an active direct methanol fuel cell fed with neat methanol. J Power Sources 219:325–332CrossRef Nakagawa N, Tsujiguchi T, Sakurai S, Aoki R (2012) Performance of an active direct methanol fuel cell fed with neat methanol. J Power Sources 219:325–332CrossRef
54.
Zurück zum Zitat Gwak G, Kim D, Lee S, Ju H (2017) Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs). Int J Hydrogen Energy 1–13 Gwak G, Kim D, Lee S, Ju H (2017) Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs). Int J Hydrogen Energy 1–13
55.
Zurück zum Zitat Qi Z, Kaufman A (2002) Open circuit voltage and methanol crossover in DMFCs. J Power Sources 110(1):177–185CrossRef Qi Z, Kaufman A (2002) Open circuit voltage and methanol crossover in DMFCs. J Power Sources 110(1):177–185CrossRef
56.
Zurück zum Zitat Hikita S, Yamane K, Nakajima Y (2001) Measurement of methanol crossover in direct methanol fuel cell. JSAE Rev 22(2):151–156CrossRef Hikita S, Yamane K, Nakajima Y (2001) Measurement of methanol crossover in direct methanol fuel cell. JSAE Rev 22(2):151–156CrossRef
Metadaten
Titel
Comparison of Gaseous and Liquid Fuel Cells for Automotive Applications
verfasst von
A. Thirkell
R. Chen
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5947-1_5

    Premium Partner