Skip to main content
Erschienen in: Social Network Analysis and Mining 1/2019

01.12.2019 | Original Article

Complex networks are structurally distinguishable by domain

verfasst von: Ryan A. Rossi, Nesreen K. Ahmed

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Complex networks arise in many domains and often represent phenomena such as brain activity, social relationships, molecular interactions, hyperlinks, and re-tweets. In this work, we study the problem of predicting the category (domain) of arbitrary networks. This includes complex networks from different domains as well as synthetically generated graphs from six different network models. We formulate this problem as a multiclass classification problem and learn a model to predict the domain of a new previously unseen network using only a small set of simple structural features. The model is able to accurately predict the domain of arbitrary networks from 17 different domains with 95.7% accuracy. This work makes two important findings. First, our results indicate that complex networks from various domains have distinct structural properties that allow us to predict with high accuracy the category of a new previously unseen network. Second, synthetic graphs are trivial to classify as the classification model can predict with near-certainty the graph model used to generate it. Overall, the results demonstrate that networks drawn from different domains and graph models are distinguishable using a few simple structural features.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abrahao B, Soundarajan S, Hopcroft J, Kleinberg R (2012) On the separability of structural classes of communities. In: KDD Abrahao B, Soundarajan S, Hopcroft J, Kleinberg R (2012) On the separability of structural classes of communities. In: KDD
Zurück zum Zitat Ahmed NK, Neville J, Kompella R (2014) Network sampling: from static to streaming graphs. TKDD 8(2):7:1–7:56 Ahmed NK, Neville J, Kompella R (2014) Network sampling: from static to streaming graphs. TKDD 8(2):7:1–7:56
Zurück zum Zitat Ahmed NK, Neville J, Rossi RA, Duffield N (2015) Efficient graphlet counting for large networks. In: ICDM Ahmed NK, Neville J, Rossi RA, Duffield N (2015) Efficient graphlet counting for large networks. In: ICDM
Zurück zum Zitat Ahmed NK, Neville J, Rossi RA, Duffield N, Willke TL (2016) Graphlet decomposition: framework, algorithms, and applications. Knowl Inf Syst (KAIS) 50(3):1–32 Ahmed NK, Neville J, Rossi RA, Duffield N, Willke TL (2016) Graphlet decomposition: framework, algorithms, and applications. Knowl Inf Syst (KAIS) 50(3):1–32
Zurück zum Zitat Ahmed NK, Rossi RA (2015) Interactive visual graph analytics on the web. In: ICWSM, pp 566–569 Ahmed NK, Rossi RA (2015) Interactive visual graph analytics on the web. In: ICWSM, pp 566–569
Zurück zum Zitat Ahmed NK, Rossi RA, Zhou R, Lee JB, Kong X, Willke TL, Eldardiry H (2017) Representation learning in large attributed graphs. In: WiML NIPS Ahmed NK, Rossi RA, Zhou R, Lee JB, Kong X, Willke TL, Eldardiry H (2017) Representation learning in large attributed graphs. In: WiML NIPS
Zurück zum Zitat Ali W, Wegner AE, Gaunt RE, Deane CM, Reinert G (2016) Comparison of large networks with sub-sampling strategies. Sci Rep 6:28955CrossRef Ali W, Wegner AE, Gaunt RE, Deane CM, Reinert G (2016) Comparison of large networks with sub-sampling strategies. Sci Rep 6:28955CrossRef
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
Zurück zum Zitat Bonner S, Brennan J, Kureshi I, Theodoropoulos G, McGough A (2016) Efficient comparison of massive graphs through the use of graph fingerprints. In: KDD MLG workshop Bonner S, Brennan J, Kureshi I, Theodoropoulos G, McGough A (2016) Efficient comparison of massive graphs through the use of graph fingerprints. In: KDD MLG workshop
Zurück zum Zitat Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) Deep topology classification: a new approach for massive graph classification. In: IEEE BigData, pp 3290–3297 Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) Deep topology classification: a new approach for massive graph classification. In: IEEE BigData, pp 3290–3297
Zurück zum Zitat Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) GFP-X: A parallel approach to massive graph comparison using spark. In: IEEE Big Data, pp 3298–3307 Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) GFP-X: A parallel approach to massive graph comparison using spark. In: IEEE Big Data, pp 3298–3307
Zurück zum Zitat Canning JP, Ingram EE, Nowak-Wolff S, Ortiz AM, Ahmed NK, Rossi RA, Schmitt KRB, Soundarajan S (2017) Network classification and categorization. arXiv:1709.04481 Canning JP, Ingram EE, Nowak-Wolff S, Ortiz AM, Ahmed NK, Rossi RA, Schmitt KRB, Soundarajan S (2017) Network classification and categorization. arXiv:​1709.​04481
Zurück zum Zitat Canning JP, Ingram EE, Nowak-Wolff S, Ortiz AM, Ahmed NK, Rossi RA, Schmitt KRB, Soundarajan S (2018) Predicting graph categories from structural properties. arXiv:1805.02682 Canning JP, Ingram EE, Nowak-Wolff S, Ortiz AM, Ahmed NK, Rossi RA, Schmitt KRB, Soundarajan S (2018) Predicting graph categories from structural properties. arXiv:​1805.​02682
Zurück zum Zitat Chung F, Lu L (2002) Connected components in random graphs with given expected degree sequences. Ann Comb 6(2):125–145MathSciNetCrossRef Chung F, Lu L (2002) Connected components in random graphs with given expected degree sequences. Ann Comb 6(2):125–145MathSciNetCrossRef
Zurück zum Zitat Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH
Zurück zum Zitat Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: NIPS, pp 2224–2232 Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: NIPS, pp 2224–2232
Zurück zum Zitat Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hungar Acad Sci 5:17–61MathSciNetMATH Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hungar Acad Sci 5:17–61MathSciNetMATH
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer, New YorkMATH Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer, New YorkMATH
Zurück zum Zitat Gärtner T (2003) A survey of kernels for structured data. SIGKDD Explor 5(1):49–58CrossRef Gärtner T (2003) A survey of kernels for structured data. SIGKDD Explor 5(1):49–58CrossRef
Zurück zum Zitat Gärtner T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and efficient alternatives. learning theory and kernel machines. pp 129–143 Gärtner T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and efficient alternatives. learning theory and kernel machines. pp 129–143
Zurück zum Zitat Goldsmith TE, Davenport DM (1990) Assessing structural similarity of graphs Goldsmith TE, Davenport DM (1990) Assessing structural similarity of graphs
Zurück zum Zitat Guo T, Zhu X (2013) Understanding the roles of sub-graph features for graph classification: an empirical study perspective. In: CIKM. ACM, pp 817–822 Guo T, Zhu X (2013) Understanding the roles of sub-graph features for graph classification: an empirical study perspective. In: CIKM. ACM, pp 817–822
Zurück zum Zitat Holme P, Kim BJ (2002) Growing scale-free networks with tunable clustering. Physl Rev E 65(2):026107CrossRef Holme P, Kim BJ (2002) Growing scale-free networks with tunable clustering. Physl Rev E 65(2):026107CrossRef
Zurück zum Zitat Ikehara K (2016) The structure of complex networks across domains. PhD thesis, University of Colorado at Boulder Ikehara K (2016) The structure of complex networks across domains. PhD thesis, University of Colorado at Boulder
Zurück zum Zitat Ikehara K, Clauset A (2017) Characterizing the structural diversity of complex networks across domains. arXiv preprint arXiv:1710.11304 Ikehara K, Clauset A (2017) Characterizing the structural diversity of complex networks across domains. arXiv preprint arXiv:​1710.​11304
Zurück zum Zitat Khan AM, Gleich DF, Pothen A, Halappanavar M (2012) A multithreaded algorithm for network alignment via approximate matching. In: HPCC, pp 64 Khan AM, Gleich DF, Pothen A, Halappanavar M (2012) A multithreaded algorithm for network alignment via approximate matching. In: HPCC, pp 64
Zurück zum Zitat Kollias G, Sathe M, Schenk O, Grama A (2014) Fast parallel algorithms for graph similarity and matching. J Parall Distrib Comput 74(5):2400–2410CrossRef Kollias G, Sathe M, Schenk O, Grama A (2014) Fast parallel algorithms for graph similarity and matching. J Parall Distrib Comput 74(5):2400–2410CrossRef
Zurück zum Zitat Koutra D, Tong H, Lubensky D (2013) Big-align: fast bipartite graph alignment. In: ICDM, pp 389–398 Koutra D, Tong H, Lubensky D (2013) Big-align: fast bipartite graph alignment. In: ICDM, pp 389–398
Zurück zum Zitat Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z (2010) Kronecker graphs: an approach to modeling networks. JMLR 11(Feb):985–1042MathSciNetMATH Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z (2010) Kronecker graphs: an approach to modeling networks. JMLR 11(Feb):985–1042MathSciNetMATH
Zurück zum Zitat Li G, Semerci M, Yener B, Zaki MJ (2012) Effective graph classification based on topological and label attributes. Stat Anal Data Min 5(4):265–283MathSciNetCrossRef Li G, Semerci M, Yener B, Zaki MJ (2012) Effective graph classification based on topological and label attributes. Stat Anal Data Min 5(4):265–283MathSciNetCrossRef
Zurück zum Zitat Mahadevan P, Hubble C, Krioukov D, Huffaker B, Vahdat A (2007) Orbis: rescaling degree correlations to generate annotated internet topologies. ACM SIGCOMM Comput Commun Rev 37(4):325–336CrossRef Mahadevan P, Hubble C, Krioukov D, Huffaker B, Vahdat A (2007) Orbis: rescaling degree correlations to generate annotated internet topologies. ACM SIGCOMM Comput Commun Rev 37(4):325–336CrossRef
Zurück zum Zitat Mahé P, Ueda N, Akutsu T, Perret J-L, Vert J-P (2004) Extensions of marginalized graph kernels. In ICML, pp 70 Mahé P, Ueda N, Akutsu T, Perret J-L, Vert J-P (2004) Extensions of marginalized graph kernels. In ICML, pp 70
Zurück zum Zitat Malod-Dognin N, Pržulj N (2015) L-graal: Lagrangian graphlet-based network aligner. Bioinformatics 31(13):2182–2189CrossRef Malod-Dognin N, Pržulj N (2015) L-graal: Lagrangian graphlet-based network aligner. Bioinformatics 31(13):2182–2189CrossRef
Zurück zum Zitat Milenković T, Ng WL, Hayes W, Pržulj N (2010) Optimal network alignment with graphlet degree vectors. Cancer Info. 9:121 Milenković T, Ng WL, Hayes W, Pržulj N (2010) Optimal network alignment with graphlet degree vectors. Cancer Info. 9:121
Zurück zum Zitat Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef
Zurück zum Zitat Moreno S, Kirshner S, Neville J, Vishwanathan S (2010) Tied Kronecker product graph models to capture variance in network populations. In: Proceedings of the 48th annual Allerton conference on communication, control, and computing. pp 1137–1144 Moreno S, Kirshner S, Neville J, Vishwanathan S (2010) Tied Kronecker product graph models to capture variance in network populations. In: Proceedings of the 48th annual Allerton conference on communication, control, and computing. pp 1137–1144
Zurück zum Zitat Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701CrossRef Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701CrossRef
Zurück zum Zitat Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118CrossRef Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118CrossRef
Zurück zum Zitat Onnela J-P, Fenn DJ, Reid S, Porter MA, Mucha PJ, Fricker MD, Jones NS (2012) Taxonomies of networks from community structure. Phys Rev E 86(3):036104CrossRef Onnela J-P, Fenn DJ, Reid S, Porter MA, Mucha PJ, Fricker MD, Jones NS (2012) Taxonomies of networks from community structure. Phys Rev E 86(3):036104CrossRef
Zurück zum Zitat Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Netw 18(8):1093–1110CrossRef Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Netw 18(8):1093–1110CrossRef
Zurück zum Zitat Raymond JW, Gardiner EJ, Willett P (2002) Rascal: calculation of graph similarity using maximum common edge subgraphs. Comput J 45(6):631–644CrossRef Raymond JW, Gardiner EJ, Willett P (2002) Rascal: calculation of graph similarity using maximum common edge subgraphs. Comput J 45(6):631–644CrossRef
Zurück zum Zitat Rossi RA, Ahmed NK (2014) Coloring large complex networks. Soc Netw Anal Min 4(1):1–37CrossRef Rossi RA, Ahmed NK (2014) Coloring large complex networks. Soc Netw Anal Min 4(1):1–37CrossRef
Zurück zum Zitat Rossi RA, Ahmed NK (2015) Role discovery in networks. TKDE 27(4):1112–1131 Rossi RA, Ahmed NK (2015) Role discovery in networks. TKDE 27(4):1112–1131
Zurück zum Zitat Rossi RA, Fahmy S, Talukder N (2013) A multi-level approach for evaluating internet topology generators. In: IFIP networking, pp 1–9 Rossi RA, Fahmy S, Talukder N (2013) A multi-level approach for evaluating internet topology generators. In: IFIP networking, pp 1–9
Zurück zum Zitat Rossi RA, Gleich DF, Gebremedhin AH, Patwary MA (2014) Fast maximum clique algorithms for large graphs. In: WWW Rossi RA, Gleich DF, Gebremedhin AH, Patwary MA (2014) Fast maximum clique algorithms for large graphs. In: WWW
Zurück zum Zitat Shervashidze N, Schweitzer P, Leeuwen EJV, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels. JMLR 12:2539–2561MathSciNetMATH Shervashidze N, Schweitzer P, Leeuwen EJV, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels. JMLR 12:2539–2561MathSciNetMATH
Zurück zum Zitat Shervashidze N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet kernels for large graph comparison. In: AISTATS, pp 488–495 Shervashidze N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet kernels for large graph comparison. In: AISTATS, pp 488–495
Zurück zum Zitat Soundarajan S, Eliassi-Rad T, Gallagher B (2014) A guide to selecting a network similarity method. In: SDM, pp 1037–1045 Soundarajan S, Eliassi-Rad T, Gallagher B (2014) A guide to selecting a network similarity method. In: SDM, pp 1037–1045
Zurück zum Zitat Ugander J, Backstrom L, Kleinberg J (2013) Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In: WWW, pp 1307–1318 Ugander J, Backstrom L, Kleinberg J (2013) Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In: WWW, pp 1307–1318
Zurück zum Zitat van Steen M (2010) Graph theory and complex networks. 1st ed van Steen M (2010) Graph theory and complex networks. 1st ed
Zurück zum Zitat Vishwanathan S, Schraudolph N, Kondor R, Borgwardt K (2010) Graph kernels. JMLR 11:1201–1242MathSciNetMATH Vishwanathan S, Schraudolph N, Kondor R, Borgwardt K (2010) Graph kernels. JMLR 11:1201–1242MathSciNetMATH
Zurück zum Zitat Wang X, Liu X, Loguinov D (2007) Modeling the evolution of degree correlation in scale-free topology generators. In: INFOCOM Wang X, Liu X, Loguinov D (2007) Modeling the evolution of degree correlation in scale-free topology generators. In: INFOCOM
Zurück zum Zitat Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRef Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRef
Metadaten
Titel
Complex networks are structurally distinguishable by domain
verfasst von
Ryan A. Rossi
Nesreen K. Ahmed
Publikationsdatum
01.12.2019
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2019
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-019-0593-7

Weitere Artikel der Ausgabe 1/2019

Social Network Analysis and Mining 1/2019 Zur Ausgabe

Premium Partner