Skip to main content

2013 | OriginalPaper | Buchkapitel

Component-Normalized Generalized Gradient Vector Flow for Snakes

verfasst von : Yao Zhao, Ce Zhu, Lunming Qin, Huihui Bai, Huawei Tian

Erschienen in: The Era of Interactive Media

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The abstract should summarize the contents of the paper and should contain at least 70 and at most 150 words. It should be written using the abstract environment. Snakes, or active contours, have been widely used for image segmentation. An external force for snakes called gradient vector flow (GVF) largely addresses traditional snake problems of initialization sensitivity and poor convergence to concavities, and generalized GVF (GGVF) aims to improve GVF snake convergence to long and thin indentations. In this paper, we find and show that in the case of long and thin even-width indentations, GGVF generally fails to work. We identify the crux of the convergence problem, and accordingly propose a new external force termed as component-normalized GGVF (CN-GGVF) to eliminate the problem. CN-GGVF is obtained by normalizing each component of initial GGVF vectors with respect to its own magnitude. Comparisons against GGVF snakes show that the proposed CN-GGVF snakes can capture long and thin indentations regardless of odd or even widths with remarkably faster convergence speeds, and achieve lower computational complexity in vector normalization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.CrossRef M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.CrossRef
2.
Zurück zum Zitat C. Xu, D. Pham, and J. Prince, “Image segmentation using deformable models,” in Handbook of Medical Imaging, Medical Image Processing and Analysis, M. Sonka and J. M. Fitzpatrick, Eds. Bellingham, WA: SPIE, 2000, vol. 2, ch. 3, pp. 129–174. C. Xu, D. Pham, and J. Prince, “Image segmentation using deformable models,” in Handbook of Medical Imaging, Medical Image Processing and Analysis, M. Sonka and J. M. Fitzpatrick, Eds. Bellingham, WA: SPIE, 2000, vol. 2, ch. 3, pp. 129–174.
3.
Zurück zum Zitat X. Xie and M. Mirmehdi, “MAC: Magnetostatic Active Contour Model,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 632–646, 2008.CrossRef X. Xie and M. Mirmehdi, “MAC: Magnetostatic Active Contour Model,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 632–646, 2008.CrossRef
4.
Zurück zum Zitat A. Mansouri, D. Mukherjee, and S. Acton, “Constraining active contour evolution via Lie Groups of transformation,” IEEE Trans. Image Process., vol. 13, no. 6, pp. 853–863, 2004.MathSciNetCrossRef A. Mansouri, D. Mukherjee, and S. Acton, “Constraining active contour evolution via Lie Groups of transformation,” IEEE Trans. Image Process., vol. 13, no. 6, pp. 853–863, 2004.MathSciNetCrossRef
5.
Zurück zum Zitat N. Ray and S. Acton, “Motion gradient vector flow: An external force for tracking rolling leukocytes with shape and size constrained active contours,” IEEE Trans. Med. Imag., vol. 23, no. 12, pp. 1466–1478, 2004.CrossRef N. Ray and S. Acton, “Motion gradient vector flow: An external force for tracking rolling leukocytes with shape and size constrained active contours,” IEEE Trans. Med. Imag., vol. 23, no. 12, pp. 1466–1478, 2004.CrossRef
6.
Zurück zum Zitat B. Li and S. Acton, “Active contour external force using vector field convolution for image segmentation,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2096–2106, 2007.MathSciNetCrossRef B. Li and S. Acton, “Active contour external force using vector field convolution for image segmentation,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2096–2106, 2007.MathSciNetCrossRef
7.
Zurück zum Zitat P. Ghosh, L. Bertelli, B. Sumengen, and B. Manjunath, “A nonconservative flow field for robust variational image segmentation,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 478–490, 2010.MathSciNetCrossRef P. Ghosh, L. Bertelli, B. Sumengen, and B. Manjunath, “A nonconservative flow field for robust variational image segmentation,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 478–490, 2010.MathSciNetCrossRef
8.
Zurück zum Zitat A. Abrantes and J. Marques, “A class of constrained clustering algorithms for object boundary extraction,” IEEE Trans. Image Process., vol. 5, no. 11, pp. 1507–1521, 1996.CrossRef A. Abrantes and J. Marques, “A class of constrained clustering algorithms for object boundary extraction,” IEEE Trans. Image Process., vol. 5, no. 11, pp. 1507–1521, 1996.CrossRef
9.
Zurück zum Zitat C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Image Process., vol. 7, no. 3, pp. 359–369, 1998.MathSciNetMATHCrossRef C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Image Process., vol. 7, no. 3, pp. 359–369, 1998.MathSciNetMATHCrossRef
10.
Zurück zum Zitat J. Cheng and S. Foo, “Dynamic directional gradient vector flow for snakes,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1563–1571, 2006.CrossRef J. Cheng and S. Foo, “Dynamic directional gradient vector flow for snakes,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1563–1571, 2006.CrossRef
11.
Zurück zum Zitat C. Xu and J. Prince, “Generalized gradient vector flow external forces for active contours,” Signal Process., vol. 71, no. 2, pp. 131–139, 1998.MATHCrossRef C. Xu and J. Prince, “Generalized gradient vector flow external forces for active contours,” Signal Process., vol. 71, no. 2, pp. 131–139, 1998.MATHCrossRef
12.
Zurück zum Zitat L. Cohen, “On active contour models and balloons,” CVGIP: Image Understand., vol. 53, no. 2, pp. 211–218, 1991.MATHCrossRef L. Cohen, “On active contour models and balloons,” CVGIP: Image Understand., vol. 53, no. 2, pp. 211–218, 1991.MATHCrossRef
13.
Zurück zum Zitat L. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1131–1147, 1993.CrossRef L. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1131–1147, 1993.CrossRef
Metadaten
Titel
Component-Normalized Generalized Gradient Vector Flow for Snakes
verfasst von
Yao Zhao
Ce Zhu
Lunming Qin
Huihui Bai
Huawei Tian
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3501-3_41

Neuer Inhalt