Skip to main content

2018 | OriginalPaper | Buchkapitel

12. Compressed Sensing for High Density Neural Recording

verfasst von : Jie Zhang, Tao Xiong, Srinjoy Mitra, Ralph Etienne-Cummings

Erschienen in: CMOS Circuits for Biological Sensing and Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the major challenges in large scale electrophysiology recording devices is the volume of data generated. Typically, each electrode samples the neural signal at 30 KHz with 10 bits digital resolution, a typical speed for neural action potentials acquisition. Hence, a 1000 channel neural probe generates data on the order of 300 Mbits per second. For neuroscientists, this presents an enormous problem in both data transmission and data analysis. Recently, as the demand for high density and distributed neural recording devices grows, tackling the problem of data compression and transmission has become extremely urgent. In this chapter, we first summarize a number of techniques used for neural signal compression. We then focus on the recent development on the use of compressed sensing theory to design more efficient high density neural recording circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Wilson, B.L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261(5124), 1055–1059 (1993)CrossRef M.A. Wilson, B.L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261(5124), 1055–1059 (1993)CrossRef
2.
Zurück zum Zitat S. Mitra, J. Putzeys, F. Battaglia, C.M. Lopez, M. Welkenhuysen, C. Pennartz, C. Van Hoof, R.F. Yazicioglu, 24-channel dual-band wireless neural recorder with activity-dependent power consumption, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, New York, 2013), pp. 292–293CrossRef S. Mitra, J. Putzeys, F. Battaglia, C.M. Lopez, M. Welkenhuysen, C. Pennartz, C. Van Hoof, R.F. Yazicioglu, 24-channel dual-band wireless neural recorder with activity-dependent power consumption, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, New York, 2013), pp. 292–293CrossRef
3.
Zurück zum Zitat R.J. Staba, C.L. Wilson, A. Bragin, I. Fried, J. Engel, Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum. J. Neurosci. 22(13), 5694–5704 (2002) R.J. Staba, C.L. Wilson, A. Bragin, I. Fried, J. Engel, Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum. J. Neurosci. 22(13), 5694–5704 (2002)
4.
Zurück zum Zitat J.N. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B.L. Bardakjian, M. Derchansky, D. Serletis, P.L. Carlen, 256-channel neural recording and delta compression microsystem with 3d electrodes. IEEE J. Solid State Circuits 44(3), 995–1005 (2009)CrossRef J.N. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B.L. Bardakjian, M. Derchansky, D. Serletis, P.L. Carlen, 256-channel neural recording and delta compression microsystem with 3d electrodes. IEEE J. Solid State Circuits 44(3), 995–1005 (2009)CrossRef
5.
Zurück zum Zitat D.H. Hubel, T.N. Wiesel, Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)CrossRef D.H. Hubel, T.N. Wiesel, Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)CrossRef
6.
Zurück zum Zitat E.M. Maynard, C.T. Nordhausen, R.A. Normann, The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997)CrossRef E.M. Maynard, C.T. Nordhausen, R.A. Normann, The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997)CrossRef
7.
Zurück zum Zitat C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G.G. Gielen, An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid State Circuits 49(1), 248–261 (2014)CrossRef C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G.G. Gielen, An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid State Circuits 49(1), 248–261 (2014)CrossRef
8.
Zurück zum Zitat R. Shulyzki, K. Abdelhalim, A. Bagheri, M.T. Salam, C.M. Florez, J.L. Perez Velazquez, P.L. Carlen, R. Genov, 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE Trans. Biomed. Circuits Syst. 9(1), 34–49 (2015)CrossRef R. Shulyzki, K. Abdelhalim, A. Bagheri, M.T. Salam, C.M. Florez, J.L. Perez Velazquez, P.L. Carlen, R. Genov, 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE Trans. Biomed. Circuits Syst. 9(1), 34–49 (2015)CrossRef
9.
Zurück zum Zitat D. Seo, J.M. Carmena, J.M. Rabaey, M.M. Maharbiz, E. Alon, Model validation of untethered, ultrasonic neural dust motes for cortical recording. J. Neurosci. Methods 244, 114–122 (2015)CrossRef D. Seo, J.M. Carmena, J.M. Rabaey, M.M. Maharbiz, E. Alon, Model validation of untethered, ultrasonic neural dust motes for cortical recording. J. Neurosci. Methods 244, 114–122 (2015)CrossRef
10.
Zurück zum Zitat A. Khalifa, J. Zhang, M. Leistner, R. Etienne-Cummings, A compact, low-power, fully analog implantable microstimulator, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2016) A. Khalifa, J. Zhang, M. Leistner, R. Etienne-Cummings, A compact, low-power, fully analog implantable microstimulator, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2016)
11.
Zurück zum Zitat F. Chen, A.P. Chandrakasan, V.M. Stojanović, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)CrossRef F. Chen, A.P. Chandrakasan, V.M. Stojanović, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)CrossRef
12.
Zurück zum Zitat A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEICE Trans. Electron. 75(4), 371–382 (1992) A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEICE Trans. Electron. 75(4), 371–382 (1992)
13.
Zurück zum Zitat S. Kim, R. Normann, R. Harrison, F. Solzbacher et al., Preliminary study of the thermal impact of a microelectrode array implanted in the brain, in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS’06 (IEEE, New York, 2006), pp. 2986–2989 S. Kim, R. Normann, R. Harrison, F. Solzbacher et al., Preliminary study of the thermal impact of a microelectrode array implanted in the brain, in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS’06 (IEEE, New York, 2006), pp. 2986–2989
14.
Zurück zum Zitat D.A. Borton, M. Yin, J. Aceros, A. Nurmikko, An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10(2), 026010 (2013) D.A. Borton, M. Yin, J. Aceros, A. Nurmikko, An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10(2), 026010 (2013)
15.
Zurück zum Zitat H. Gao, R.M. Walker, P. Nuyujukian, K.A. Makinwa, K.V. Shenoy, B. Murmann, T.H. Meng, Hermese: a 96-channel full data rate direct neural interface in 0.13μm CMOS. IEEE J. Solid State Circuits 47(4), 1043–1055 (2012) H. Gao, R.M. Walker, P. Nuyujukian, K.A. Makinwa, K.V. Shenoy, B. Murmann, T.H. Meng, Hermese: a 96-channel full data rate direct neural interface in 0.13μm CMOS. IEEE J. Solid State Circuits 47(4), 1043–1055 (2012)
16.
Zurück zum Zitat J. Zhang, K. Duncan, Y. Suo, T. Xiong, S. Mitra, T.D. Tran, R. Etienne-Cummings, Communication channel analysis and real time compressed sensing for high density neural recording devices. IEEE Trans. Circuits Syst. Regul. Pap. 63(5), 599–608 (2016)CrossRef J. Zhang, K. Duncan, Y. Suo, T. Xiong, S. Mitra, T.D. Tran, R. Etienne-Cummings, Communication channel analysis and real time compressed sensing for high density neural recording devices. IEEE Trans. Circuits Syst. Regul. Pap. 63(5), 599–608 (2016)CrossRef
17.
Zurück zum Zitat E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH
20.
Zurück zum Zitat D. Needell, J.A. Tropp, Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)MathSciNetCrossRefMATH D. Needell, J.A. Tropp, Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)MathSciNetCrossRefMATH
21.
Zurück zum Zitat J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH
22.
Zurück zum Zitat M.S. Lewicki, B.A. Olshausen, Probabilistic framework for the adaptation and comparison of image codes. JOSA A 16(7), 1587–1601 (1999)CrossRef M.S. Lewicki, B.A. Olshausen, Probabilistic framework for the adaptation and comparison of image codes. JOSA A 16(7), 1587–1601 (1999)CrossRef
23.
Zurück zum Zitat M.S. Lewicki, T.J. Sejnowski, Learning overcomplete representations. Neural Comput. 12(2), 337–365 (2000)CrossRef M.S. Lewicki, T.J. Sejnowski, Learning overcomplete representations. Neural Comput. 12(2), 337–365 (2000)CrossRef
24.
Zurück zum Zitat K. Engan, S.O. Aase, J.H. Husøy, Multi-frame compression: theory and design. Signal Process. 80(10), 2121–2140 (2000)CrossRefMATH K. Engan, S.O. Aase, J.H. Husøy, Multi-frame compression: theory and design. Signal Process. 80(10), 2121–2140 (2000)CrossRefMATH
25.
Zurück zum Zitat M. Aharon, M. Elad, A. Bruckstein, K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefMATH M. Aharon, M. Elad, A. Bruckstein, K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefMATH
26.
Zurück zum Zitat M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)MathSciNetCrossRef M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)MathSciNetCrossRef
27.
Zurück zum Zitat J.M. Duarte-Carvajalino, G. Sapiro, Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. DTIC Document, Technical Report (2008)MATH J.M. Duarte-Carvajalino, G. Sapiro, Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. DTIC Document, Technical Report (2008)MATH
28.
Zurück zum Zitat M. Elad, Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)MathSciNetCrossRef M. Elad, Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)MathSciNetCrossRef
29.
Zurück zum Zitat D. Gangopadhyay, E.G. Allstot, A.M. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRef D. Gangopadhyay, E.G. Allstot, A.M. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRef
30.
Zurück zum Zitat Z. Charbiwala, V. Karkare, S. Gibson, D. Marković, M.B. Srivastava, Compressive sensing of neural action potentials using a learned union of supports, in 2011 International Conference on Body Sensor Networks (BSN) (IEEE, New York, 2011), pp. 53–58CrossRef Z. Charbiwala, V. Karkare, S. Gibson, D. Marković, M.B. Srivastava, Compressive sensing of neural action potentials using a learned union of supports, in 2011 International Conference on Body Sensor Networks (BSN) (IEEE, New York, 2011), pp. 53–58CrossRef
31.
Zurück zum Zitat M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)CrossRef M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)CrossRef
32.
Zurück zum Zitat J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)CrossRef J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)CrossRef
33.
Zurück zum Zitat M. Zhang, A. Bermak, Compressive acquisition CMOS image sensor: from the algorithm to hardware implementation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(3), 490–500 (2010)CrossRef M. Zhang, A. Bermak, Compressive acquisition CMOS image sensor: from the algorithm to hardware implementation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(3), 490–500 (2010)CrossRef
34.
Zurück zum Zitat D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Regul. Pap. 62(11), 2718–2729 (2015)MathSciNetCrossRef D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Regul. Pap. 62(11), 2718–2729 (2015)MathSciNetCrossRef
35.
Zurück zum Zitat C. Bulach, U. Bihr, M. Ortmanns, Evaluation study of compressed sensing for neural spike recordings, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2012), pp. 3507–3510 C. Bulach, U. Bihr, M. Ortmanns, Evaluation study of compressed sensing for neural spike recordings, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2012), pp. 3507–3510
36.
Zurück zum Zitat Q. Zhang, B. Li, Discriminative k-svd for dictionary learning in face recognition, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, New York, 2010), pp. 2691–2698 Q. Zhang, B. Li, Discriminative k-svd for dictionary learning in face recognition, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, New York, 2010), pp. 2691–2698
37.
Zurück zum Zitat R.Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)CrossRefMATH R.Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)CrossRefMATH
38.
Zurück zum Zitat T. Sasaki, N. Matsuki, Y. Ikegaya, Action-potential modulation during axonal conduction. Science 331(6017), 599–601 (2011)CrossRef T. Sasaki, N. Matsuki, Y. Ikegaya, Action-potential modulation during axonal conduction. Science 331(6017), 599–601 (2011)CrossRef
39.
Zurück zum Zitat P.H. Thakur, H. Lu, S.S. Hsiao, K.O. Johnson, Automated optimal detection and classification of neural action potentials in extra-cellular recordings. J. Neurosci. Methods 162(1), 364–376 (2007)CrossRef P.H. Thakur, H. Lu, S.S. Hsiao, K.O. Johnson, Automated optimal detection and classification of neural action potentials in extra-cellular recordings. J. Neurosci. Methods 162(1), 364–376 (2007)CrossRef
40.
Zurück zum Zitat B. Sun, W. Zhao, X. Zhu, Training-free compressed sensing for wireless neural recording using analysis model and group weighted-minimization. J. Neural Eng. 14(3), 036018 (2017) B. Sun, W. Zhao, X. Zhu, Training-free compressed sensing for wireless neural recording using analysis model and group weighted-minimization. J. Neural Eng. 14(3), 036018 (2017)
41.
Zurück zum Zitat C.M. Gray, P.E. Maldonado, M. Wilson, B. McNaughton, Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods 63(1), 43–54 (1995)CrossRef C.M. Gray, P.E. Maldonado, M. Wilson, B. McNaughton, Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods 63(1), 43–54 (1995)CrossRef
42.
Zurück zum Zitat K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, G. Buzsáki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84(1), 401–414 (2000)CrossRef K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, G. Buzsáki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84(1), 401–414 (2000)CrossRef
43.
Zurück zum Zitat A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Advances in Neural Information Processing Systems, vol. 14 (2001), pp. 849–856 A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Advances in Neural Information Processing Systems, vol. 14 (2001), pp. 849–856
44.
Zurück zum Zitat W.F. Asaad, E.N. Eskandar, Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J. Neurosci. 31(49), 17772–17787 (2011)CrossRef W.F. Asaad, E.N. Eskandar, Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J. Neurosci. 31(49), 17772–17787 (2011)CrossRef
45.
Zurück zum Zitat D.A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, G. Buzsáki, Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84(1), 390–400 (2000)CrossRef D.A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, G. Buzsáki, Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84(1), 390–400 (2000)CrossRef
Metadaten
Titel
Compressed Sensing for High Density Neural Recording
verfasst von
Jie Zhang
Tao Xiong
Srinjoy Mitra
Ralph Etienne-Cummings
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67723-1_12

Neuer Inhalt