Skip to main content
Erschienen in: Metals and Materials International 10/2020

10.08.2019

Compressive Mechanical Properties and Shock-Induced Reaction Behavior of a Ti–29Nb–13Ta–4.6Zr Alloy

verfasst von: Zhiping Guo, Ran Liu, Chuan Ting Wang, Yong He, Yuan He, Yue Ma, Xuebing Hu

Erschienen in: Metals and Materials International | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The compressive mechanical properties of a Ti–29Nb–13Ta–4.6Zr alloy were investigated at room temperature under various strain rates. The parameters of a modified Johnson–Cook constitutive equation were determined to describe the strain softening behavior under dynamic conditions. The testing results under compression show yield strength evidently increases with the increase of the strain rate. Moreover, it was found that the strain-rate effect of the yield strength upon dynamic deformation is more significant than that upon quasi-static deformation. In order to characterize the impact-initiated reaction behavior of Ti–29Nb–13Ta–4.6Zr alloy, the quasi-sealed test chamber was used to measure the pressure caused by energy released of fragments. It was obviously shown that the exothermic chemical reaction was more intense with the increase of impact velocity.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.R. Amaya-Vazquez, J.M. Sánchez-Amaya, Z. Boukha, F.J. Botana, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros. Sci. 6, 36–48 (2012)CrossRef M.R. Amaya-Vazquez, J.M. Sánchez-Amaya, Z. Boukha, F.J. Botana, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros. Sci. 6, 36–48 (2012)CrossRef
2.
Zurück zum Zitat C.X. Cui, B.M. Hu, L.C. Zhao, S.J. Liu, Titanium alloy production technology, market prospects and industry development. Mater. Des. 32, 1684–1689 (2011)CrossRef C.X. Cui, B.M. Hu, L.C. Zhao, S.J. Liu, Titanium alloy production technology, market prospects and industry development. Mater. Des. 32, 1684–1689 (2011)CrossRef
3.
Zurück zum Zitat R.R. Boyer, An overview on the use of titanium in aerospace industry. J. Mater. Sci. Eng. A 213, 103–114 (1996)CrossRef R.R. Boyer, An overview on the use of titanium in aerospace industry. J. Mater. Sci. Eng. A 213, 103–114 (1996)CrossRef
4.
Zurück zum Zitat M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications. Adv. Eng. Mater. 5, 419–427 (2003)CrossRef M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications. Adv. Eng. Mater. 5, 419–427 (2003)CrossRef
5.
Zurück zum Zitat H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C 26, 1269–1277 (2006)CrossRef H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C 26, 1269–1277 (2006)CrossRef
6.
Zurück zum Zitat I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263, 112–116 (1999)CrossRef I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263, 112–116 (1999)CrossRef
7.
Zurück zum Zitat Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, T.B. Sercombe, Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scr. Mater. 153, 99–103 (2018)CrossRef Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, T.B. Sercombe, Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scr. Mater. 153, 99–103 (2018)CrossRef
8.
Zurück zum Zitat S. Li, S. Zhao, W. Hou, C.Y. Teng, Y.L. Hao, Y. Li, R. Yang, R.D.K. Misra, Functionally graded Ti–6Al–4V meshes with high strength and energy absorption. Adv. Eng. Mater. 18, 34–38 (2018)CrossRef S. Li, S. Zhao, W. Hou, C.Y. Teng, Y.L. Hao, Y. Li, R. Yang, R.D.K. Misra, Functionally graded Ti–6Al–4V meshes with high strength and energy absorption. Adv. Eng. Mater. 18, 34–38 (2018)CrossRef
9.
Zurück zum Zitat K. Narita, M. Niinomi, M. Nakai, J. Hieda, K. Oribe, Development of thermo-mechanical processing for fabricating highly durable β-type Ti–Nb–Ta–Zr rod for use in spinal fixation devices. J. Mech. Behav. Biomed. Mater. 9, 207–216 (2012)CrossRef K. Narita, M. Niinomi, M. Nakai, J. Hieda, K. Oribe, Development of thermo-mechanical processing for fabricating highly durable β-type Ti–Nb–Ta–Zr rod for use in spinal fixation devices. J. Mech. Behav. Biomed. Mater. 9, 207–216 (2012)CrossRef
10.
Zurück zum Zitat T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C 25, 248–254 (2005)CrossRef T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C 25, 248–254 (2005)CrossRef
11.
Zurück zum Zitat X. Song, M. Niinomi, H. Tsutsumi, M. Nakai, L. Wang, Effects of TiB on mechanical properties of β-type titanium alloy for use in biomedical applications. Mater. Sci. Eng. A 528, 5600–5609 (2011)CrossRef X. Song, M. Niinomi, H. Tsutsumi, M. Nakai, L. Wang, Effects of TiB on mechanical properties of β-type titanium alloy for use in biomedical applications. Mater. Sci. Eng. A 528, 5600–5609 (2011)CrossRef
12.
Zurück zum Zitat N. Sakagucgi, M. Niinomi, T. Akahori, Tensile deformation behavior of Ti–Nb–Ta–Zr biomedical alloys. Mater. Trans. 45, 113–1119 (2004) N. Sakagucgi, M. Niinomi, T. Akahori, Tensile deformation behavior of Ti–Nb–Ta–Zr biomedical alloys. Mater. Trans. 45, 113–1119 (2004)
13.
Zurück zum Zitat N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater. Sci. Eng. C 25, 363–369 (2005)CrossRef N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater. Sci. Eng. C 25, 363–369 (2005)CrossRef
14.
Zurück zum Zitat S.J. Li, R. Yang, S. Li, Y.L. Yao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear 257, 869–876 (2004)CrossRef S.J. Li, R. Yang, S. Li, Y.L. Yao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear 257, 869–876 (2004)CrossRef
15.
Zurück zum Zitat E. Farghadany, A. Zarei-Hanzaki, H.R. Abedi, D. Dietrich, M.R. Yadegari, T. Lampke, The coupled temperature-strain rate sensitivity of Ti–29Nb–13Ta–4.6Zr alloy. Mater. Sci. Eng. A 610, 258–262 (2014)CrossRef E. Farghadany, A. Zarei-Hanzaki, H.R. Abedi, D. Dietrich, M.R. Yadegari, T. Lampke, The coupled temperature-strain rate sensitivity of Ti–29Nb–13Ta–4.6Zr alloy. Mater. Sci. Eng. A 610, 258–262 (2014)CrossRef
16.
Zurück zum Zitat X.F. Zhang, A.S. Shi, L. Qiao, J. Zhang, Y.G. Zhang, Z.W. Guan, Experimental study on impact-initiated characters of multifunctional energetic structural materials. J. Appl. Phys. 113, 083508 (2013)CrossRef X.F. Zhang, A.S. Shi, L. Qiao, J. Zhang, Y.G. Zhang, Z.W. Guan, Experimental study on impact-initiated characters of multifunctional energetic structural materials. J. Appl. Phys. 113, 083508 (2013)CrossRef
17.
Zurück zum Zitat S. Hanagud, Z. Wu, R. Zaharieva, X. Lu, Multiscale models for multicomponent structural energetic materials, in 17th Structures, Structural Dynamics and Materials Conference, Palm Spring, USA (2009) S. Hanagud, Z. Wu, R. Zaharieva, X. Lu, Multiscale models for multicomponent structural energetic materials, in 17th Structures, Structural Dynamics and Materials Conference, Palm Spring, USA (2009)
18.
Zurück zum Zitat N.N. Thadhani, Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures. J. Appl. Phys. 76, 2129–2138 (1994)CrossRef N.N. Thadhani, Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures. J. Appl. Phys. 76, 2129–2138 (1994)CrossRef
19.
Zurück zum Zitat X.F. Zhang, X.N. Zhao, L. Qiao, Theory analysis on shock-induced chemical reaction of reactive metal. Explos. Shock Waves 30, 145–151 (2010) X.F. Zhang, X.N. Zhao, L. Qiao, Theory analysis on shock-induced chemical reaction of reactive metal. Explos. Shock Waves 30, 145–151 (2010)
20.
Zurück zum Zitat R.G. Ames, Reaction efficiencies for impact-initiated energetic materials, in 32nd International Pyrotechnics Seminar, Karlsruhe, Germany (2005) R.G. Ames, Reaction efficiencies for impact-initiated energetic materials, in 32nd International Pyrotechnics Seminar, Karlsruhe, Germany (2005)
21.
Zurück zum Zitat C.T. Wang, Y. He, C. Ji, Y. He, W. Han, X.C. Pan, Investigation on shock-induced reaction characteristics of a Zr-based metallic glass. Intermetallics 93, 383–388 (2018)CrossRef C.T. Wang, Y. He, C. Ji, Y. He, W. Han, X.C. Pan, Investigation on shock-induced reaction characteristics of a Zr-based metallic glass. Intermetallics 93, 383–388 (2018)CrossRef
22.
Zurück zum Zitat T.W. Zhang, Z.M. Jiao, Z.H. Wang, J.W. Qiao, Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy. Scr. Mater. 136, 15–19 (2017)CrossRef T.W. Zhang, Z.M. Jiao, Z.H. Wang, J.W. Qiao, Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy. Scr. Mater. 136, 15–19 (2017)CrossRef
23.
Zurück zum Zitat L. Wang, J.W. Qiao, S.G. Ma, Z.M. Jiao, T.W. Zhang, G. Chen, D. Zhao, Y. Zhang, Z.H. Wang, Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading. Mater. Sci. Eng. A 727, 208–213 (2018)CrossRef L. Wang, J.W. Qiao, S.G. Ma, Z.M. Jiao, T.W. Zhang, G. Chen, D. Zhao, Y. Zhang, Z.H. Wang, Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading. Mater. Sci. Eng. A 727, 208–213 (2018)CrossRef
24.
25.
Zurück zum Zitat G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983) G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983)
26.
Zurück zum Zitat G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)CrossRef G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)CrossRef
27.
Zurück zum Zitat M. Calamaz, D. Coupard, F. Girot, A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 48, 275–288 (2008)CrossRef M. Calamaz, D. Coupard, F. Girot, A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 48, 275–288 (2008)CrossRef
28.
Zurück zum Zitat M. Sima, T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 50, 943–960 (2010)CrossRef M. Sima, T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 50, 943–960 (2010)CrossRef
29.
Zurück zum Zitat J.J. Mason, A.J. Rosakis, G. Ravichandran, On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 17, 135–145 (1994)CrossRef J.J. Mason, A.J. Rosakis, G. Ravichandran, On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 17, 135–145 (1994)CrossRef
30.
Zurück zum Zitat A.M. Lennon, K.T. Ramesh, The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J. Plast. 20, 269–290 (2004)CrossRef A.M. Lennon, K.T. Ramesh, The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J. Plast. 20, 269–290 (2004)CrossRef
31.
Zurück zum Zitat A.S. Khan, Y.S. Suh, R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int. J. Plast. 20, 2233–2248 (2018)CrossRef A.S. Khan, Y.S. Suh, R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int. J. Plast. 20, 2233–2248 (2018)CrossRef
32.
Zurück zum Zitat H. Bros, M.L. Michel, R. Castanet, Enthalpy and heat capacity of titanium based alloys. J. Therm. Anal. 41, 7–24 (1994)CrossRef H. Bros, M.L. Michel, R. Castanet, Enthalpy and heat capacity of titanium based alloys. J. Therm. Anal. 41, 7–24 (1994)CrossRef
33.
Zurück zum Zitat J. Sun, Y.B. Guo, Material flow stress and failure in multiscale machining titanium alloy Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 41, 651–659 (2009)CrossRef J. Sun, Y.B. Guo, Material flow stress and failure in multiscale machining titanium alloy Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 41, 651–659 (2009)CrossRef
34.
Zurück zum Zitat T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. J Alloys Compd. 753, 412–421 (2018)CrossRef T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. J Alloys Compd. 753, 412–421 (2018)CrossRef
35.
Zurück zum Zitat V.D. Mishra, B.C. Rao, H. Murthy, Enhancement of mechanical properties by cold-rolling of Al6061. Mater. Today Proc. 5, 8263–8270 (2018)CrossRef V.D. Mishra, B.C. Rao, H. Murthy, Enhancement of mechanical properties by cold-rolling of Al6061. Mater. Today Proc. 5, 8263–8270 (2018)CrossRef
36.
Zurück zum Zitat I. Markovic, S. Ivanov, U. Stamenkovic et al., Annealing behavior of Cu–7at.%Pd alloy deformed by cold rolling. J. Alloys Compd. 768, 944–952 (2018)CrossRef I. Markovic, S. Ivanov, U. Stamenkovic et al., Annealing behavior of Cu–7at.%Pd alloy deformed by cold rolling. J. Alloys Compd. 768, 944–952 (2018)CrossRef
37.
Zurück zum Zitat C.N. Athreya, G. Kapoor, J. Gubicza, V. Subramanya Sarma, Influence of mode of plastic straining on the microstructure of Ni and Ti deformed through rolling and torsion. Mater. Charact. 132, 205–214 (2017)CrossRef C.N. Athreya, G. Kapoor, J. Gubicza, V. Subramanya Sarma, Influence of mode of plastic straining on the microstructure of Ni and Ti deformed through rolling and torsion. Mater. Charact. 132, 205–214 (2017)CrossRef
38.
Zurück zum Zitat Y.B. Wang, W.D. Zeng, X. Sun, J.W. Xu, The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures. Mater. Sci. Eng. A 677, 325–331 (2016)CrossRef Y.B. Wang, W.D. Zeng, X. Sun, J.W. Xu, The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures. Mater. Sci. Eng. A 677, 325–331 (2016)CrossRef
39.
Zurück zum Zitat B. Feng, C.A. Bronkhorst, F.L. Addessio, B.M. Morrow, W.H. Li, T. Lookman, E.K. Cerreta, Coupled nonlinear elasticity, plastic slip, twinning, and phase transformation in single crystal titanium for plate impact loading. J. Mech. Phys. Solids 127, 358–385 (2019)CrossRef B. Feng, C.A. Bronkhorst, F.L. Addessio, B.M. Morrow, W.H. Li, T. Lookman, E.K. Cerreta, Coupled nonlinear elasticity, plastic slip, twinning, and phase transformation in single crystal titanium for plate impact loading. J. Mech. Phys. Solids 127, 358–385 (2019)CrossRef
Metadaten
Titel
Compressive Mechanical Properties and Shock-Induced Reaction Behavior of a Ti–29Nb–13Ta–4.6Zr Alloy
verfasst von
Zhiping Guo
Ran Liu
Chuan Ting Wang
Yong He
Yuan He
Yue Ma
Xuebing Hu
Publikationsdatum
10.08.2019
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 10/2020
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-019-00414-z

Weitere Artikel der Ausgabe 10/2020

Metals and Materials International 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.