Skip to main content
Erschienen in: Innovative Infrastructure Solutions 3/2021

01.09.2021 | Technical paper

Compressive strength prediction of fly ash concrete by using machine learning techniques

verfasst von: Suhaila Khursheed, J. Jagan, Pijush Samui, Sanjay Kumar

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, the machine learning techniques such as, minimax probability machine regression (MPMR), relevance vector machine (RVM), genetic programming (GP), emotional neural network (ENN) and extreme learning machine (ELM) were utilized in the event of forecasting the 28 days compressive strength of fly ash concrete. In the present examination, exploratory database enveloping appropriate information recovered from a few past investigations has been made and used to prepare and approve the abovementioned MPMR, RVM, GP, ENN and ELM models. The database consists of cement, fly ash, coarse aggregate, fine aggregate, water, and water-binder ratio as the inputs whereas compressive strength of the concrete for 28 days is the output. The capability of the described models can be assessed by distinctive statistical parameters. The results from the mentioned models have been compared and decided that the MPMR model (R = 0.992) could be occupied as a decisive and authoritative data astute approach for forecasting the compressive strength of concrete which was fusion with fly ash as the admixture, thus preserving the tedious laboratory works. The accuracy of the adopted techniques was justified by comparing the distinct statistical parameters, distribution figures, and Taylor diagrams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbasi S, Jannaty MH, Faraj RH, Shahbazpanahi S, Mosavi A (2020) The effect of incorporating silica stone waste on the mechanical properties of sustainable concretes. Materials 13:3832CrossRef Abbasi S, Jannaty MH, Faraj RH, Shahbazpanahi S, Mosavi A (2020) The effect of incorporating silica stone waste on the mechanical properties of sustainable concretes. Materials 13:3832CrossRef
2.
Zurück zum Zitat Hansen TC (1990) Long-term strength of high fly ash concrete. Cem Concr Res 20:193–196CrossRef Hansen TC (1990) Long-term strength of high fly ash concrete. Cem Concr Res 20:193–196CrossRef
3.
Zurück zum Zitat Babu KG, Rao GSN (1996) Efficiency of fly ash in concrete with age. Cem Concr Res 26:465–474CrossRef Babu KG, Rao GSN (1996) Efficiency of fly ash in concrete with age. Cem Concr Res 26:465–474CrossRef
4.
Zurück zum Zitat Lu P, Chen S, Zheng Y (2012) Artificial intelligence in civil engineering. Math Probl Eng 2012:1–23 Lu P, Chen S, Zheng Y (2012) Artificial intelligence in civil engineering. Math Probl Eng 2012:1–23
5.
Zurück zum Zitat Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Elsevier, Waltham Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Elsevier, Waltham
6.
Zurück zum Zitat Chou JS, Pham AD (2015) Smart artificial firefly colony-based support vector regression for enhanced forecasting in civil engineering. Comput Aided Civ Infrastruct Eng 30(9):715–732CrossRef Chou JS, Pham AD (2015) Smart artificial firefly colony-based support vector regression for enhanced forecasting in civil engineering. Comput Aided Civ Infrastruct Eng 30(9):715–732CrossRef
7.
Zurück zum Zitat Rafiei MH, Khushefati WH, Demirboga R, Adeli H (2017) Supervised deep restricted Boltzmann machine for estimation of concrete. ACI Mater J 114(2):237–244 Rafiei MH, Khushefati WH, Demirboga R, Adeli H (2017) Supervised deep restricted Boltzmann machine for estimation of concrete. ACI Mater J 114(2):237–244
8.
Zurück zum Zitat Mauro C, Leonardo T, Ivo G, Aleš P (2017) An evolutionary system for the prediction of high-performance concrete strength based on semantic genetic programming. Comput Concr Int J 19(6):651–658 Mauro C, Leonardo T, Ivo G, Aleš P (2017) An evolutionary system for the prediction of high-performance concrete strength based on semantic genetic programming. Comput Concr Int J 19(6):651–658
9.
Zurück zum Zitat Osama AH, Tamer ES, Abdulaziz MA (2018) Prediction of creep in concrete using genetic programming hybridized with ANN. Comput Concr Int J 21(5):513 Osama AH, Tamer ES, Abdulaziz MA (2018) Prediction of creep in concrete using genetic programming hybridized with ANN. Comput Concr Int J 21(5):513
10.
Zurück zum Zitat Rafiei MH, Adeli H (2018) A novel unsupervised deep learning model for global and local health condition assessment of structures. Eng Struct 156:598–607CrossRef Rafiei MH, Adeli H (2018) A novel unsupervised deep learning model for global and local health condition assessment of structures. Eng Struct 156:598–607CrossRef
11.
Zurück zum Zitat Iyad SA, Prabir KS (2019) Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming. Comput Concr 24(4):295–302 Iyad SA, Prabir KS (2019) Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming. Comput Concr 24(4):295–302
12.
Zurück zum Zitat Topçu İB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 41(3):305–311CrossRef Topçu İB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 41(3):305–311CrossRef
13.
Zurück zum Zitat Dao DV, Trinh SH, Ly HB, Ham BT (2019) Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates. Novel Hybrid Artificial Intelligence Approaches. Appl Sci 9:1113CrossRef Dao DV, Trinh SH, Ly HB, Ham BT (2019) Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates. Novel Hybrid Artificial Intelligence Approaches. Appl Sci 9:1113CrossRef
14.
Zurück zum Zitat Ashrafian A, Taheri AMJ, Masoumi P, Asadi-shiadeh M, Yaghoubi-chenari M, Mosavi A, Nabipour N (2020) Classification-based regression models for prediction of the mechanical properties of roller-compacted concrete pavement. Appl Sci 10(11):3707CrossRef Ashrafian A, Taheri AMJ, Masoumi P, Asadi-shiadeh M, Yaghoubi-chenari M, Mosavi A, Nabipour N (2020) Classification-based regression models for prediction of the mechanical properties of roller-compacted concrete pavement. Appl Sci 10(11):3707CrossRef
15.
Zurück zum Zitat Ali A, Amir HG, Mohammad R, Mohammad E (2020) An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement. Measurement 152:107309CrossRef Ali A, Amir HG, Mohammad R, Mohammad E (2020) An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement. Measurement 152:107309CrossRef
16.
Zurück zum Zitat Amir AS, Habib AB, Saeed G (2020) Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J Build Eng 31:101326CrossRef Amir AS, Habib AB, Saeed G (2020) Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J Build Eng 31:101326CrossRef
17.
Zurück zum Zitat Amir AS, Maziar Y, Saeed G, Habib AB, Abouzar J, Hamid FG (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697CrossRef Amir AS, Maziar Y, Saeed G, Habib AB, Abouzar J, Hamid FG (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697CrossRef
18.
Zurück zum Zitat Pijush S, Dookie K (2017) Minimax probability machine regression and extreme learning machine applied to compression index of marine clay. Indian J Geo Mar Sci 46(11):2350–2356 Pijush S, Dookie K (2017) Minimax probability machine regression and extreme learning machine applied to compression index of marine clay. Indian J Geo Mar Sci 46(11):2350–2356
19.
Zurück zum Zitat Thirumalaiselvi A, Verma M, Anandavalli N, Rajasankar J (2018) Response prediction of laced steel-concrete composite beams using machine learning algorithms. Struct Eng Mech 66(3):399–409 Thirumalaiselvi A, Verma M, Anandavalli N, Rajasankar J (2018) Response prediction of laced steel-concrete composite beams using machine learning algorithms. Struct Eng Mech 66(3):399–409
20.
Zurück zum Zitat Susom D, Pijush S, Dookie K (2018) Comparison of machine learning techniques to predict compressive strength of concrete. Comput Concr 21(4):463–470 Susom D, Pijush S, Dookie K (2018) Comparison of machine learning techniques to predict compressive strength of concrete. Comput Concr 21(4):463–470
21.
Zurück zum Zitat Deo RC, Samui P, Kim D (2015) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Env Res Risk Assess 30(6):1769–1784CrossRef Deo RC, Samui P, Kim D (2015) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Env Res Risk Assess 30(6):1769–1784CrossRef
22.
Zurück zum Zitat Yong L, Yan FS, Xinxin L, Jian H, Kang L (2016) Long-term streamflow forecasting based on relevance vector machine model. Water 9(1):9CrossRef Yong L, Yan FS, Xinxin L, Jian H, Kang L (2016) Long-term streamflow forecasting based on relevance vector machine model. Water 9(1):9CrossRef
23.
Zurück zum Zitat Rahul KA, Frankle M, Madan MT (2019) Ensemble of relevance vector machines and boosted trees for electricity price forecasting. Appl Energy 250:540–548CrossRef Rahul KA, Frankle M, Madan MT (2019) Ensemble of relevance vector machines and boosted trees for electricity price forecasting. Appl Energy 250:540–548CrossRef
24.
Zurück zum Zitat Manoj K, Roohollah SF, Masoud M, Danial JA, Muhd ZBAM, Saffet Y (2017) Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models. Eng Comput 33:13–21CrossRef Manoj K, Roohollah SF, Masoud M, Danial JA, Muhd ZBAM, Saffet Y (2017) Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models. Eng Comput 33:13–21CrossRef
25.
Zurück zum Zitat Soleimani S, Rajaei S, Jiao P, Sabz A, Soheilinia S (2018) New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement 113:99–107CrossRef Soleimani S, Rajaei S, Jiao P, Sabz A, Soheilinia S (2018) New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement 113:99–107CrossRef
26.
Zurück zum Zitat Boumanchar I, Charafeddine K, Chhiti Y, M’hamdi-Alaoui FE, Sahibed-Dine A, Bentiss F, Jama C, Bensitel M (2019) Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming. Biomass Convers Biorefin 9:499–509 Boumanchar I, Charafeddine K, Chhiti Y, M’hamdi-Alaoui FE, Sahibed-Dine A, Bentiss F, Jama C, Bensitel M (2019) Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming. Biomass Convers Biorefin 9:499–509
27.
Zurück zum Zitat Fellous JM (1999) Neuromodulatory basis of emotion. Neuroscientist 5(5):283–294CrossRef Fellous JM (1999) Neuromodulatory basis of emotion. Neuroscientist 5(5):283–294CrossRef
28.
Zurück zum Zitat Nourani V (2017) An emotional ANN (EANN) approach to modeling rainfall–runoff process. J Hydrol 544:267–277CrossRef Nourani V (2017) An emotional ANN (EANN) approach to modeling rainfall–runoff process. J Hydrol 544:267–277CrossRef
29.
Zurück zum Zitat Gholami A, Bonakdari H, Samui P, Mohammadian M, Gharabaghi B (2019) Predicting stable alluvial channel profiles using emotional artificial neural networks. Appl Soft Comput 78:420–437CrossRef Gholami A, Bonakdari H, Samui P, Mohammadian M, Gharabaghi B (2019) Predicting stable alluvial channel profiles using emotional artificial neural networks. Appl Soft Comput 78:420–437CrossRef
30.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501CrossRef
31.
Zurück zum Zitat Pezhman TG, Hassanpour DH, Mosavi A, Yusof KBW, Alizamir M, Shamshirband S, Chau K (2018) Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng Appl Comput Fluid Mech 12(1):738–749 Pezhman TG, Hassanpour DH, Mosavi A, Yusof KBW, Alizamir M, Shamshirband S, Chau K (2018) Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng Appl Comput Fluid Mech 12(1):738–749
32.
Zurück zum Zitat Wang L, Li X, Bai Y (2018) Short-term wind speed prediction using an extreme learning machine model with error correction. Energy Convers Manag 162:239–250CrossRef Wang L, Li X, Bai Y (2018) Short-term wind speed prediction using an extreme learning machine model with error correction. Energy Convers Manag 162:239–250CrossRef
33.
Zurück zum Zitat Adnan RM, Liang Z, Trajkovic S, Zounemat KM, Li B, Kisi O (2019) Daily streamflow prediction using optimally pruned extreme learning machine. J Hydrol 577:123981CrossRef Adnan RM, Liang Z, Trajkovic S, Zounemat KM, Li B, Kisi O (2019) Daily streamflow prediction using optimally pruned extreme learning machine. J Hydrol 577:123981CrossRef
34.
Zurück zum Zitat Mehta PK, Gjorv OE (1982) Properties of Portland cement concrete containing fly ash and condensed silica fume. Cem Concr Res 12:587–595CrossRef Mehta PK, Gjorv OE (1982) Properties of Portland cement concrete containing fly ash and condensed silica fume. Cem Concr Res 12:587–595CrossRef
35.
Zurück zum Zitat Ravina D, Mehta PK (1988) Compressive strength of low cement/high fly ash concrete. Cem Concr Res 18(4):571–583CrossRef Ravina D, Mehta PK (1988) Compressive strength of low cement/high fly ash concrete. Cem Concr Res 18(4):571–583CrossRef
36.
Zurück zum Zitat Thomas MDA, Matthews JD (1992) Carbonation of fly ash concrete. Mag Concr Res 44(160):217–228CrossRef Thomas MDA, Matthews JD (1992) Carbonation of fly ash concrete. Mag Concr Res 44(160):217–228CrossRef
37.
Zurück zum Zitat Lam L, Wong YL, Poon CS (1998) Effect of fly ash and silica fume on compressive and fracture behaviours of concrete. Cem Concr Res 28:271–283CrossRef Lam L, Wong YL, Poon CS (1998) Effect of fly ash and silica fume on compressive and fracture behaviours of concrete. Cem Concr Res 28:271–283CrossRef
38.
Zurück zum Zitat Cengiz DA (2003) High-volume fly ash concrete with high strength and low drying shrinkage. J Mater Civ Eng 15(2):153–156CrossRef Cengiz DA (2003) High-volume fly ash concrete with high strength and low drying shrinkage. J Mater Civ Eng 15(2):153–156CrossRef
39.
Zurück zum Zitat Oner A, Akyuz S, Yildiz R (2005) An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res 35:1165–1171CrossRef Oner A, Akyuz S, Yildiz R (2005) An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res 35:1165–1171CrossRef
40.
Zurück zum Zitat Chaleea W, Ausapanit P, Jaturapitakkul C (2010) Utilization of fly ash concrete in marine environment for long term design life analysis. Mater Des 31:1242–1249CrossRef Chaleea W, Ausapanit P, Jaturapitakkul C (2010) Utilization of fly ash concrete in marine environment for long term design life analysis. Mater Des 31:1242–1249CrossRef
41.
Zurück zum Zitat Liu M, Wang Y (2011) Prediction of the strength development of fly ash concrete. Adv Mater Res 150–151:1026–1033 Liu M, Wang Y (2011) Prediction of the strength development of fly ash concrete. Adv Mater Res 150–151:1026–1033
42.
Zurück zum Zitat Jayeshkumar P (2014) Prediction of strength for fly ash cement concrete through soft computing approaches. Int J Adv Res Eng Sci Manag 1:1–11 Jayeshkumar P (2014) Prediction of strength for fly ash cement concrete through soft computing approaches. Int J Adv Res Eng Sci Manag 1:1–11
43.
Zurück zum Zitat Palika C, Rajendra KS, Maneek K (2016) Prediction of compressive strength of concrete using artificial neural network and genetic programming. Adv Mater Sci Eng 1:10 Palika C, Rajendra KS, Maneek K (2016) Prediction of compressive strength of concrete using artificial neural network and genetic programming. Adv Mater Sci Eng 1:10
44.
Zurück zum Zitat Strohmann T, Grudic GZ (2003) A formulation for minimax probability machine regression. Adv Neural Inf Process Syst 2003:785–792 Strohmann T, Grudic GZ (2003) A formulation for minimax probability machine regression. Adv Neural Inf Process Syst 2003:785–792
45.
Zurück zum Zitat Lanckriet GRG, Ghaoui LE, Bhattacharyya C, Jordan MI (2002) Minimax probability machine. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge Lanckriet GRG, Ghaoui LE, Bhattacharyya C, Jordan MI (2002) Minimax probability machine. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge
46.
Zurück zum Zitat Kumar M, Mittal M, Samui P (2013) Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation. Earthq Sci 26:147–150CrossRef Kumar M, Mittal M, Samui P (2013) Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation. Earthq Sci 26:147–150CrossRef
47.
Zurück zum Zitat Deo RC, Samui P (2017) Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City. J Hydrol Eng 22(6):05017003CrossRef Deo RC, Samui P (2017) Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City. J Hydrol Eng 22(6):05017003CrossRef
48.
Zurück zum Zitat Ali M, Deo RC (2020) Modeling wheat yield with data-intelligent algorithms. Handbook of probabilistic models. Elsevier, Berlin, pp 37–87 Ali M, Deo RC (2020) Modeling wheat yield with data-intelligent algorithms. Handbook of probabilistic models. Elsevier, Berlin, pp 37–87
49.
Zurück zum Zitat Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244 Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
50.
Zurück zum Zitat Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, USA Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, USA
51.
Zurück zum Zitat Khashman A (2008) Application of an emotional neural network to facial recognition. Neural Comput Appl 18(4):309–320CrossRef Khashman A (2008) Application of an emotional neural network to facial recognition. Neural Comput Appl 18(4):309–320CrossRef
52.
Zurück zum Zitat Baumgartner T, Esslen M, Jancke L (2006) From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int J Psychophysiol 60:34–43CrossRef Baumgartner T, Esslen M, Jancke L (2006) From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int J Psychophysiol 60:34–43CrossRef
53.
Zurück zum Zitat Khashman A (2008) A modified backpropagation learning algorithm with added emotional coefficients. IEEE Trans Neural Netw 19(11):1896–1909CrossRef Khashman A (2008) A modified backpropagation learning algorithm with added emotional coefficients. IEEE Trans Neural Netw 19(11):1896–1909CrossRef
54.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE international joint conference on neural networks (IJCNN'2004), Budapest Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE international joint conference on neural networks (IJCNN'2004), Budapest
55.
Zurück zum Zitat Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models Part I—a discussion of principles. J Hydrol 10(3):282–290CrossRef Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models Part I—a discussion of principles. J Hydrol 10(3):282–290CrossRef
56.
Zurück zum Zitat Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the agglomerates from their petrographic composition. Eng Geol 66(1–2):39–51CrossRef Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the agglomerates from their petrographic composition. Eng Geol 66(1–2):39–51CrossRef
57.
Zurück zum Zitat Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72CrossRef Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72CrossRef
58.
Zurück zum Zitat Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41:1–16CrossRef Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41:1–16CrossRef
59.
Zurück zum Zitat Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900CrossRef Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900CrossRef
60.
Zurück zum Zitat Wang CW, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306CrossRef Wang CW, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306CrossRef
61.
Zurück zum Zitat Chen H, Xu C, Guo S (2012) Comparison and evaluation of multiple GCM’s, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J Hydrol 434–435:36–45CrossRef Chen H, Xu C, Guo S (2012) Comparison and evaluation of multiple GCM’s, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J Hydrol 434–435:36–45CrossRef
62.
Zurück zum Zitat Nurichan C (2014) Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J Afr Earth Sc 100:634–644CrossRef Nurichan C (2014) Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J Afr Earth Sc 100:634–644CrossRef
63.
Zurück zum Zitat Chandwani V, Agrawal V, Ravindra N (2015) Modeling slump of ready-mix concrete using genetic algorithms assisted training of artificial neural network. Expert Syst Appl 42:885–893CrossRef Chandwani V, Agrawal V, Ravindra N (2015) Modeling slump of ready-mix concrete using genetic algorithms assisted training of artificial neural network. Expert Syst Appl 42:885–893CrossRef
64.
Zurück zum Zitat Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Meth Geomech 36:1636–1650CrossRef Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Meth Geomech 36:1636–1650CrossRef
65.
Zurück zum Zitat Srinivasulu S, Jain A (2006) A comparative analysis of training methods for artificial neural network rainfall–runoff models. Appl Soft Comput 6:295–306CrossRef Srinivasulu S, Jain A (2006) A comparative analysis of training methods for artificial neural network rainfall–runoff models. Appl Soft Comput 6:295–306CrossRef
66.
Zurück zum Zitat Ceryan N, Samui P (2020) Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree. Arab J Geosci 13(7):288CrossRef Ceryan N, Samui P (2020) Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree. Arab J Geosci 13(7):288CrossRef
67.
Zurück zum Zitat Samui P, Kim D, Jagan J, Roy SS (2018) Determination of uplift capacity of suction caisson using Gaussian process regression, minimax probability machine regression and extreme learning machine. Iran J Sci Technol Trans Civ Eng 43(1):651–657 Samui P, Kim D, Jagan J, Roy SS (2018) Determination of uplift capacity of suction caisson using Gaussian process regression, minimax probability machine regression and extreme learning machine. Iran J Sci Technol Trans Civ Eng 43(1):651–657
68.
Zurück zum Zitat Jagan J, Pijush S, Dookie K (2019) Reliability analysis of simply supported beam using GRNN, ELM and GPR. Struct Eng Mech 71(6):739–749 Jagan J, Pijush S, Dookie K (2019) Reliability analysis of simply supported beam using GRNN, ELM and GPR. Struct Eng Mech 71(6):739–749
69.
Zurück zum Zitat Pijush S, Jagan J, Dookie K (2019) Development of equation for determining the compression index of marine clay. Indian J Geo Mar Sci 48(11):1796–1802 Pijush S, Jagan J, Dookie K (2019) Development of equation for determining the compression index of marine clay. Indian J Geo Mar Sci 48(11):1796–1802
70.
Zurück zum Zitat Zhang H, Zhou J, Armaghani DJ, Tahir MM, Pham BT, Huynh VV (2020) A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration. Appl Sci 10(3):869 Zhang H, Zhou J, Armaghani DJ, Tahir MM, Pham BT, Huynh VV (2020) A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration. Appl Sci 10(3):869
71.
Zurück zum Zitat Bi J, Bennett KP (2003) Regression error characteristic curves. In: Proceedings of the 20th international conference on machine learning (ICML-2003), Washington, pp 43–50 Bi J, Bennett KP (2003) Regression error characteristic curves. In: Proceedings of the 20th international conference on machine learning (ICML-2003), Washington, pp 43–50
72.
Zurück zum Zitat Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(7):7183–7192CrossRef Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(7):7183–7192CrossRef
73.
Zurück zum Zitat Yearsley JR, Sun N, Baptiste M, Nijssen B (2019) Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut. Hydrol Earth Syst Sci 23(11):4491–4508CrossRef Yearsley JR, Sun N, Baptiste M, Nijssen B (2019) Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut. Hydrol Earth Syst Sci 23(11):4491–4508CrossRef
74.
Zurück zum Zitat Yaseen ZM, Naganna SR, Sa’adi Z, Samui P, Ghorbani MA, Salih SQ, Shahid S (2020) Hourly river flow forecasting: application of emotional neural network versus multiple machine learning paradigms. Water Resour Manag 34:1–17 Yaseen ZM, Naganna SR, Sa’adi Z, Samui P, Ghorbani MA, Salih SQ, Shahid S (2020) Hourly river flow forecasting: application of emotional neural network versus multiple machine learning paradigms. Water Resour Manag 34:1–17
Metadaten
Titel
Compressive strength prediction of fly ash concrete by using machine learning techniques
verfasst von
Suhaila Khursheed
J. Jagan
Pijush Samui
Sanjay Kumar
Publikationsdatum
01.09.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 3/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00506-z

Weitere Artikel der Ausgabe 3/2021

Innovative Infrastructure Solutions 3/2021 Zur Ausgabe