Skip to main content

2010 | OriginalPaper | Buchkapitel

18. Computational Fluid Dynamics Models of Ventricular Assist Devices

verfasst von : Karen May-Newman

Erschienen in: Computational Cardiovascular Mechanics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A ventricular assist device (VAD) is a pump surgically connected to the heart and aorta in order to boost systemic blood flow in heart failure patients. The design of these devices has evolved over the past 30 years, with improvements and innovations enabled through the synergistic use of experimental research, clinical studies, and computational models. The application of computational fluid dynamics models has allowed the design of VADs to shift from large, bulky devices designed for patients with severe cardiac failure to a variety of smaller devices designed for a range of patients and cardiovascular conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goldstein S, Ali AS, Samuels LE. Ventricular remodeling: mechanisms and prevention. Cardiol Clin. 1998;16:623–32.CrossRef Goldstein S, Ali AS, Samuels LE. Ventricular remodeling: mechanisms and prevention. Cardiol Clin. 1998;16:623–32.CrossRef
2.
Zurück zum Zitat American Heart Association. Heart disease and stroke statistics – 2009 update. Dallas, TX: American Heart Association, 2009. American Heart Association. Heart disease and stroke statistics – 2009 update. Dallas, TX: American Heart Association, 2009.
3.
Zurück zum Zitat Song X, Untariou A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous flow ventricular assist device. ASAIO J. 2004;50:215–24.CrossRef Song X, Untariou A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous flow ventricular assist device. ASAIO J. 2004;50:215–24.CrossRef
4.
Zurück zum Zitat Miller L. Use of a continuous-flow device in patients awaiting heart transplantation. NEJM. 2007;357:885–96.CrossRef Miller L. Use of a continuous-flow device in patients awaiting heart transplantation. NEJM. 2007;357:885–96.CrossRef
5.
Zurück zum Zitat Park SJ, Tector A, Piccioni W, Raines E, Gelijns A, Moskowitz A, Rose E, Holman W, Furukawa S, Frazier OH, Dembitsky W. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9–17. Erratum in: J Thorac Cardiovasc Surg. 2005;129(6):1464. Park SJ, Tector A, Piccioni W, Raines E, Gelijns A, Moskowitz A, Rose E, Holman W, Furukawa S, Frazier OH, Dembitsky W. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9–17. Erratum in: J Thorac Cardiovasc Surg. 2005;129(6):1464.
6.
Zurück zum Zitat Westaby S. Elective transfer from cardiopulmonary bypass to centrifugal blood pump support in very high-risk cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:577–8.CrossRef Westaby S. Elective transfer from cardiopulmonary bypass to centrifugal blood pump support in very high-risk cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:577–8.CrossRef
7.
Zurück zum Zitat Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:1435–43.CrossRef Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:1435–43.CrossRef
8.
Zurück zum Zitat Frazier OH, Rose EA, Oz MC. Multi-center clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2009;122:1186–95.CrossRef Frazier OH, Rose EA, Oz MC. Multi-center clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2009;122:1186–95.CrossRef
9.
Zurück zum Zitat Russell SD, Miller LW, Pagani FD. Advanced heart failure: a call to action. Congest Heart Fail. 2008;14:316–21.CrossRef Russell SD, Miller LW, Pagani FD. Advanced heart failure: a call to action. Congest Heart Fail. 2008;14:316–21.CrossRef
10.
Zurück zum Zitat Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry P J, Moore CH, Loisance, DY, El Banayosy A, Frazier H. Long-term follow-up of Thoratec ventricular assist device bridge-to- recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21:516–21.CrossRef Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry P J, Moore CH, Loisance, DY, El Banayosy A, Frazier H. Long-term follow-up of Thoratec ventricular assist device bridge-to- recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21:516–21.CrossRef
11.
Zurück zum Zitat Hetzer R, Muller JH, Weng Y, Meyer R, Dandel M. Bridging-to-recovery. Ann Thorac Surg. 2001;71:S109–13.CrossRef Hetzer R, Muller JH, Weng Y, Meyer R, Dandel M. Bridging-to-recovery. Ann Thorac Surg. 2001;71:S109–13.CrossRef
12.
Zurück zum Zitat Kumpati GS, McCarthy PM, Hoercher KJ. Left ventricular assist device bridge to recovery: a review of the current status. Ann Thorac Surg. 2001;71:S103–8.CrossRef Kumpati GS, McCarthy PM, Hoercher KJ. Left ventricular assist device bridge to recovery: a review of the current status. Ann Thorac Surg. 2001;71:S103–8.CrossRef
13.
Zurück zum Zitat Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, DiTullio M, Savin S, Cordisco ME, Rose E, Oz M. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998;98:2383–9.CrossRef Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, DiTullio M, Savin S, Cordisco ME, Rose E, Oz M. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998;98:2383–9.CrossRef
14.
Zurück zum Zitat Young JB. Healing the heart with ventricular assist device therapy: mechanisms of cardiac recovery. Ann Thorac Surg. 2001;71:S210–9.CrossRef Young JB. Healing the heart with ventricular assist device therapy: mechanisms of cardiac recovery. Ann Thorac Surg. 2001;71:S210–9.CrossRef
15.
Zurück zum Zitat Mueller J, Wallukat G, Weng Y, Dandel M, Ellinghaus P, Huetter J, Hetzer R. Predictive factors for weaning from a cardiac assist device. An analysis of clinical, gene expression and protein data. J Heart Lung Transplant. 2001;20:202.CrossRef Mueller J, Wallukat G, Weng Y, Dandel M, Ellinghaus P, Huetter J, Hetzer R. Predictive factors for weaning from a cardiac assist device. An analysis of clinical, gene expression and protein data. J Heart Lung Transplant. 2001;20:202.CrossRef
17.
Zurück zum Zitat Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.CrossRef Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.CrossRef
18.
Zurück zum Zitat Long JW, Kfoury AG, Slaughter MS, Silver M, Milano C, Rogers J, Delgado R, Frazier OH. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail. 2005;11:133–8.CrossRef Long JW, Kfoury AG, Slaughter MS, Silver M, Milano C, Rogers J, Delgado R, Frazier OH. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail. 2005;11:133–8.CrossRef
19.
Zurück zum Zitat Worldheart Corporation. Worldheart corporation company. Website, 2009. Worldheart Corporation. Worldheart corporation company. Website, 2009.
20.
Zurück zum Zitat Nose Y, Motomura T. Cardiac prosthesis: artificial heart and assist circulation: past, present and future. Houston, TX: ICMT Publishers, 2003. Nose Y, Motomura T. Cardiac prosthesis: artificial heart and assist circulation: past, present and future. Houston, TX: ICMT Publishers, 2003.
21.
Zurück zum Zitat Nose Y, Yoshikawa M, Murabayashi S, Takano T. Development of rotary blood pump technology: past, present, and future. Artif Organs. 2000;24:412–20.CrossRef Nose Y, Yoshikawa M, Murabayashi S, Takano T. Development of rotary blood pump technology: past, present, and future. Artif Organs. 2000;24:412–20.CrossRef
22.
Zurück zum Zitat Thoratec Corporation. HEARTMATE® XVE LVAS EXtended Lead vented electric left ventricular assist system operating manual. Pleasanton, CA: Thoratec Corporation, 2008. Thoratec Corporation. HEARTMATE® XVE LVAS EXtended Lead vented electric left ventricular assist system operating manual. Pleasanton, CA: Thoratec Corporation, 2008.
23.
Zurück zum Zitat Hanson S, Ratner BD. Testing of blood–materials interactions. In: Ratner, BD, Hoffman AS, Schoen FJ, Lemons JE. (Eds.), Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press, 1996, pp. 228–38. Hanson S, Ratner BD. Testing of blood–materials interactions. In: Ratner, BD, Hoffman AS, Schoen FJ, Lemons JE. (Eds.), Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press, 1996, pp. 228–38.
24.
Zurück zum Zitat Snyder TA, Watach MJ, Litwak KN, Wagner WR. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg. 2002;73:1933–8.CrossRef Snyder TA, Watach MJ, Litwak KN, Wagner WR. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg. 2002;73:1933–8.CrossRef
25.
Zurück zum Zitat Gross DR. Concerning thromboembolism associated with left ventricular assist devices. Cardiovasc Res. 1999;42:45–7.CrossRef Gross DR. Concerning thromboembolism associated with left ventricular assist devices. Cardiovasc Res. 1999;42:45–7.CrossRef
26.
Zurück zum Zitat Folie BJ, McIntire LV. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J. 1989;56:1121–41.CrossRef Folie BJ, McIntire LV. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J. 1989;56:1121–41.CrossRef
27.
Zurück zum Zitat Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow patterns in vessels of simple and complex geometries. In: Leonard EF, Turitto VT, Vroman L. (Eds.), Contact with natural and artificial surfaces. New York: New York Academy of Sciences, 1987, pp. 422–41. Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow patterns in vessels of simple and complex geometries. In: Leonard EF, Turitto VT, Vroman L. (Eds.), Contact with natural and artificial surfaces. New York: New York Academy of Sciences, 1987, pp. 422–41.
28.
Zurück zum Zitat Muraki N. Ultrasonic studies of the abdominal aorta with special reference to hemodynamic considerations on thrombus formation in the abdominal aortic aneurysm. J Jpn Coll Angiol. 1983;23:401–13. Muraki N. Ultrasonic studies of the abdominal aorta with special reference to hemodynamic considerations on thrombus formation in the abdominal aortic aneurysm. J Jpn Coll Angiol. 1983;23:401–13.
29.
Zurück zum Zitat Apel J, Paul R, Klaus S, Siess T, Reul H. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs. 2001;25:341–7.CrossRef Apel J, Paul R, Klaus S, Siess T, Reul H. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs. 2001;25:341–7.CrossRef
30.
Zurück zum Zitat Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng. 1996;118:280–6.CrossRef Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng. 1996;118:280–6.CrossRef
31.
Zurück zum Zitat De Wachter D, Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs. 2002;26:576–82.CrossRef De Wachter D, Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs. 2002;26:576–82.CrossRef
32.
Zurück zum Zitat Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim D, Nishimura I, Murabayashi S, Yozu R. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs. 2003;27:920–5.CrossRef Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim D, Nishimura I, Murabayashi S, Yozu R. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs. 2003;27:920–5.CrossRef
33.
Zurück zum Zitat Kameneva M, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 2004;50:418–23.CrossRef Kameneva M, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 2004;50:418–23.CrossRef
34.
Zurück zum Zitat Kameneva M, Marad PF, Brugger JM, Repko B, Wang JH, Moran J, Borovetz HS. In vitro evaluation of hemolysis and sublethal blood trauma in a novel subcutaneous vascular access system for hemodialysis. ASAIO J. 2002;48:34–8.CrossRef Kameneva M, Marad PF, Brugger JM, Repko B, Wang JH, Moran J, Borovetz HS. In vitro evaluation of hemolysis and sublethal blood trauma in a novel subcutaneous vascular access system for hemodialysis. ASAIO J. 2002;48:34–8.CrossRef
35.
Zurück zum Zitat Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13:300–6. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13:300–6.
36.
Zurück zum Zitat Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs. 2003;27:938–41.CrossRef Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs. 2003;27:938–41.CrossRef
37.
Zurück zum Zitat Throckmorton AL, Lim DS, McCulloch MA, Jiang W, Song X, Allaire PE, Wood HG, Olsen DB. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device. ASAIO J. 2005;51:629–35.CrossRef Throckmorton AL, Lim DS, McCulloch MA, Jiang W, Song X, Allaire PE, Wood HG, Olsen DB. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device. ASAIO J. 2005;51:629–35.CrossRef
38.
Zurück zum Zitat Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs. 2006;30:168–77.CrossRef Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs. 2006;30:168–77.CrossRef
39.
Zurück zum Zitat Bluestein D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices. 2004 Sep;1(1):65–80. Review. Bluestein D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices. 2004 Sep;1(1):65–80. Review.
40.
Zurück zum Zitat Song X, Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO J. 2004;50:215–24.CrossRef Song X, Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day SW, Olsen DB. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO J. 2004;50:215–24.CrossRef
41.
Zurück zum Zitat Wu J, Antaki JF, Wagner WR, Snyder TA, Paden BE, Borovetz HS. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 2005;51:636–43.CrossRef Wu J, Antaki JF, Wagner WR, Snyder TA, Paden BE, Borovetz HS. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 2005;51:636–43.CrossRef
42.
Zurück zum Zitat Song X, Wood HG, Day SW, Olsen DB. Studies of turbulence models in a computational fluid dynamics model of a blood pump. Artif Organs. 2003;27:935–7.CrossRef Song X, Wood HG, Day SW, Olsen DB. Studies of turbulence models in a computational fluid dynamics model of a blood pump. Artif Organs. 2003;27:935–7.CrossRef
43.
Zurück zum Zitat Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP. Computational fluid dynamics investigation of a centrifugal blood pump. Artif Organs. 2008;32:342–8.CrossRef Legendre D, Antunes P, Bock E, Andrade A, Biscegli JF, Ortiz JP. Computational fluid dynamics investigation of a centrifugal blood pump. Artif Organs. 2008;32:342–8.CrossRef
44.
Zurück zum Zitat Okamoto E, Hashimoto T, Inoue T, Mitamura Y. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology. Artif Organs. 2003;27:61–7.CrossRef Okamoto E, Hashimoto T, Inoue T, Mitamura Y. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology. Artif Organs. 2003;27:61–7.CrossRef
45.
Zurück zum Zitat Okamoto E, Hashimoto T, Mitamura Y. Design of a miniature implantable left ventricular assist device using CAD/CAM technology. J Artif Organs. 2003;6:162–7.CrossRef Okamoto E, Hashimoto T, Mitamura Y. Design of a miniature implantable left ventricular assist device using CAD/CAM technology. J Artif Organs. 2003;6:162–7.CrossRef
46.
Zurück zum Zitat Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 2007;53:122–31.CrossRef Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 2007;53:122–31.CrossRef
47.
Zurück zum Zitat Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day S, Patel SM, Ellman P, Tribble C, Olsen DB. Computational design and experimental testing of a novel axial flow LVAD. ASAIO J. 2005;51:702–10.CrossRef Untaroiu A, Wood HG, Allaire PE, Throckmorton AL, Day S, Patel SM, Ellman P, Tribble C, Olsen DB. Computational design and experimental testing of a novel axial flow LVAD. ASAIO J. 2005;51:702–10.CrossRef
48.
Zurück zum Zitat Curtas AR, Wood HG, Allaire PE, McDaniel JC, Day SW, Olsen DB. Computational fluid dynamics modeling of impeller designs for the HeartQuest left ventricular assist device. ASAIO J. 2002;48:552–61.CrossRef Curtas AR, Wood HG, Allaire PE, McDaniel JC, Day SW, Olsen DB. Computational fluid dynamics modeling of impeller designs for the HeartQuest left ventricular assist device. ASAIO J. 2002;48:552–61.CrossRef
49.
Zurück zum Zitat Song X, Wood HG, Olsen D. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD). J Biomech Eng. 2004;126:180–7.CrossRef Song X, Wood HG, Olsen D. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD). J Biomech Eng. 2004;126:180–7.CrossRef
50.
Zurück zum Zitat Song X, Throckmorton AL, Wood HG, Allaire PE, Olsen DB. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. ASAIO J. 2004;50:410–7.CrossRef Song X, Throckmorton AL, Wood HG, Allaire PE, Olsen DB. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. ASAIO J. 2004;50:410–7.CrossRef
51.
Zurück zum Zitat Burgreen GW, Loree HM, Bourque K, Dague C, Poirier VL, Farrar D, Hampton E, Wu ZJ, Gempp TM, Schob R. Computational fluid dynamics analysis of a Maglev centrifugal left ventricular assist device. Artif Organs. 2004;28:874–80.CrossRef Burgreen GW, Loree HM, Bourque K, Dague C, Poirier VL, Farrar D, Hampton E, Wu ZJ, Gempp TM, Schob R. Computational fluid dynamics analysis of a Maglev centrifugal left ventricular assist device. Artif Organs. 2004;28:874–80.CrossRef
52.
Zurück zum Zitat Chua LP, Song G, Lim TM, Zhou T. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Artif Organs. 2006;30:467–77.CrossRef Chua LP, Song G, Lim TM, Zhou T. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Artif Organs. 2006;30:467–77.CrossRef
53.
Zurück zum Zitat Ashton RC, Goldstein DJ, Rose EA, Weinberg AD. Duration of left ventricular assist device support affects transplant survival. J Heart Lung Transplant. 1996;15:1151–6. Ashton RC, Goldstein DJ, Rose EA, Weinberg AD. Duration of left ventricular assist device support affects transplant survival. J Heart Lung Transplant. 1996;15:1151–6.
54.
Zurück zum Zitat Song X, Throckmorton AL, Untaroiu A, Patel S, Allaire PE, Wood HG, Olsen DB. Axial flow blood pumps. ASAIO J. 2003;49:355–64.CrossRef Song X, Throckmorton AL, Untaroiu A, Patel S, Allaire PE, Wood HG, Olsen DB. Axial flow blood pumps. ASAIO J. 2003;49:355–64.CrossRef
55.
Zurück zum Zitat Zhang J, Koert A, Gellman B, Gempp TM, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support. ASAIO J. 2007;53:23–31.CrossRef Zhang J, Koert A, Gellman B, Gempp TM, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support. ASAIO J. 2007;53:23–31.CrossRef
56.
Zurück zum Zitat Throckmorton AL, Untaroiu A, Allaire PE, Wood HG, Lim DS, McCulloch MA, Olsen DB. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. ASAIO J. 2007;53:754–61.CrossRef Throckmorton AL, Untaroiu A, Allaire PE, Wood HG, Lim DS, McCulloch MA, Olsen DB. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. ASAIO J. 2007;53:754–61.CrossRef
57.
Zurück zum Zitat Kar B, Delgado RM 3rd, Frazier OH, Gregoric ID, Harting MT, Wadia Y, Myers TJ, Moser RD, Freund J. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. Tex Heart Inst J. 2005;32(3):294–8. Kar B, Delgado RM 3rd, Frazier OH, Gregoric ID, Harting MT, Wadia Y, Myers TJ, Moser RD, Freund J. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. Tex Heart Inst J. 2005;32(3):294–8.
58.
Zurück zum Zitat Carr RT, Kotha SL. Separation surfaces for laminar flow in branching tubes – effect of Reynolds number and geometry. J Biomech Eng. 1995;117:442–7.CrossRef Carr RT, Kotha SL. Separation surfaces for laminar flow in branching tubes – effect of Reynolds number and geometry. J Biomech Eng. 1995;117:442–7.CrossRef
59.
Zurück zum Zitat May-Newman K, Hillen BK, Sironda CS, Dembitsky W. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Engin Technol. 2004;28:105–9.CrossRef May-Newman K, Hillen BK, Sironda CS, Dembitsky W. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Engin Technol. 2004;28:105–9.CrossRef
60.
Zurück zum Zitat May-Newman K, Hillen BK, Dembitsky W. The effect of LVAD outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 2006;52:132–9.CrossRef May-Newman K, Hillen BK, Dembitsky W. The effect of LVAD outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 2006;52:132–9.CrossRef
61.
Zurück zum Zitat May-Newman K, Abulon DJ, Joshi M, Dembitsky W. (submitted). Morphology and tissue characterization of fusion in aortic heart valves excised from LVAD patients. May-Newman K, Abulon DJ, Joshi M, Dembitsky W. (submitted). Morphology and tissue characterization of fusion in aortic heart valves excised from LVAD patients.
Metadaten
Titel
Computational Fluid Dynamics Models of Ventricular Assist Devices
verfasst von
Karen May-Newman
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0730-1_18

Neuer Inhalt