Skip to main content

13.09.2019

Computational Imaging Method with a Learned Plug-and-Play Prior for Electrical Capacitance Tomography

verfasst von: J. Lei, Q. B. Liu, X. Y. Wang

Erschienen in: Cognitive Computation

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrical capacitance tomography (ECT) is a potent image-based measurement technology for monitoring industrial processes, but low-quality images generally limit its application scope and measurement reliability. To increase the precision of reconstruction, in this study, a data-driven plug-and-play prior abstracted by a deep convolutional neural network (DCNN) and the sparseness prior of imaging objects, in form of regularizers, are jointly leveraged to generate a potent imaging model, in which the L1 norm of the mismatch error acts as a data fidelity term (DFT) to weaken the sensitivity of estimation result to noisy input data. The DCNN is embedded into the split Bregman (SB) technique to generate a powerful computing scheme for solving the built imaging model and the fast iterative shrinkage-thresholding algorithm (FISTA) is applied to solve the sub-problems efficiently. Extensive numerical results verify that the proposed imaging technique has competitive reconstruction ability and better robustness in comparison with the state-of-the-art methods. This study demonstrates the validity and efficacy of the proposed algorithm in reducing reconstruction error. Most importantly, the research outcomes verify that the data-driven plug-and-play prior and the sparseness prior can be jointly embedded into the imaging model, leading to a remarkable decline in reconstruction error.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tikhonov AN, Arsenin VY. Solution of ill-posed problems. New York: V.H. Winston & Sons; 1977. Tikhonov AN, Arsenin VY. Solution of ill-posed problems. New York: V.H. Winston & Sons; 1977.
2.
Zurück zum Zitat Liu S, Fu L, Yang WQ, Wang HG, Jiang F. Prior-online iteration for image reconstruction with electrical capacitance tomography. IEE Proc: Sci Meas Technol. 2004;151:195–200. Liu S, Fu L, Yang WQ, Wang HG, Jiang F. Prior-online iteration for image reconstruction with electrical capacitance tomography. IEE Proc: Sci Meas Technol. 2004;151:195–200.
3.
Zurück zum Zitat Landweber L. An iteration formula for Fredholm integral equations of the first kind. Am J Math. 1951;73:615–24. Landweber L. An iteration formula for Fredholm integral equations of the first kind. Am J Math. 1951;73:615–24.
4.
Zurück zum Zitat Yan H, Wang YF, Zhou YG, Sun YH. 3D ECT reconstruction by an improved Landweber iteration algorithm. Flow Meas Instrum. 2014;37:92–8. Yan H, Wang YF, Zhou YG, Sun YH. 3D ECT reconstruction by an improved Landweber iteration algorithm. Flow Meas Instrum. 2014;37:92–8.
5.
Zurück zum Zitat Guo G, Tong GW, Lu L, Liu S. Iterative reconstruction algorithm for the inverse problems in electrical capacitance tomography. Flow Meas Instrum. 2018;64:204–12. Guo G, Tong GW, Lu L, Liu S. Iterative reconstruction algorithm for the inverse problems in electrical capacitance tomography. Flow Meas Instrum. 2018;64:204–12.
6.
Zurück zum Zitat Arrabal-Campos FM, Aguilera-Sáez LM, Fernández I. Algebraic reconstruction technique for diffusion NMR experiments. Application to the molecular weight prediction of polymers. J Phys Chem A. 2019;123:943–50.PubMed Arrabal-Campos FM, Aguilera-Sáez LM, Fernández I. Algebraic reconstruction technique for diffusion NMR experiments. Application to the molecular weight prediction of polymers. J Phys Chem A. 2019;123:943–50.PubMed
7.
Zurück zum Zitat Dong XY, Ye ZY, Soleimani M. Image reconstruction for electrical capacitance tomography by using soft-thresholding iterative method with adaptive regulation parameter. Meas Sci Technol. 2013;24:1–8. Dong XY, Ye ZY, Soleimani M. Image reconstruction for electrical capacitance tomography by using soft-thresholding iterative method with adaptive regulation parameter. Meas Sci Technol. 2013;24:1–8.
8.
Zurück zum Zitat Wang HC, Fedchenia I, Shishkin SL, Finn A, Smith LL, Colket M. Sparsity-inspired image reconstruction for electrical capacitance tomography. Flow Meas Instrum. 2015;43:59–71. Wang HC, Fedchenia I, Shishkin SL, Finn A, Smith LL, Colket M. Sparsity-inspired image reconstruction for electrical capacitance tomography. Flow Meas Instrum. 2015;43:59–71.
9.
Zurück zum Zitat Ye JM, Wang HG, Yang WQ. Image reconstruction for electrical capacitance tomography based on sparse representation. IEEE Trans Instrum Meas. 2015;64:89–102. Ye JM, Wang HG, Yang WQ. Image reconstruction for electrical capacitance tomography based on sparse representation. IEEE Trans Instrum Meas. 2015;64:89–102.
10.
Zurück zum Zitat Hosani EA, Zhang M, Abascal J, Soleimani M. Imaging metallic samples using electrical capacitance tomography: forward modelling and reconstruction algorithms. Meas Sci Technol. 2016;27:1–11. Hosani EA, Zhang M, Abascal J, Soleimani M. Imaging metallic samples using electrical capacitance tomography: forward modelling and reconstruction algorithms. Meas Sci Technol. 2016;27:1–11.
11.
Zurück zum Zitat Frias MAR, Yang WQ. Real-time model-based image reconstruction with a prior calculated database for electrical capacitance tomography. Meas Sci Technol. 2017;28:1–14. Frias MAR, Yang WQ. Real-time model-based image reconstruction with a prior calculated database for electrical capacitance tomography. Meas Sci Technol. 2017;28:1–14.
13.
Zurück zum Zitat Xia C, Su C, Cao J, Li P. Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system. Chin J Chem Eng. 2016;24:597–605. Xia C, Su C, Cao J, Li P. Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system. Chin J Chem Eng. 2016;24:597–605.
14.
Zurück zum Zitat Wang P, Lin JS, Wang M. An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization. J Appl Res Technol. 2015;13:197–204. Wang P, Lin JS, Wang M. An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization. J Appl Res Technol. 2015;13:197–204.
15.
Zurück zum Zitat Taylor SH, Garimella SV. Shape-energy evolutionary reconstruction algorithm for electrical capacitance tomography in a high-aspect-ratio domain. Sensors Actuators A Phys. 2015;233:349–59. Taylor SH, Garimella SV. Shape-energy evolutionary reconstruction algorithm for electrical capacitance tomography in a high-aspect-ratio domain. Sensors Actuators A Phys. 2015;233:349–59.
16.
Zurück zum Zitat Wu X, Huang G, Wang J, Xu C. Image reconstruction method of electrical capacitance tomography based on compressed sensing principle. Meas Sci Technol. 2013;24:1–7. Wu X, Huang G, Wang J, Xu C. Image reconstruction method of electrical capacitance tomography based on compressed sensing principle. Meas Sci Technol. 2013;24:1–7.
17.
Zurück zum Zitat Soleimani M, Lionheart WRB. Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Meas Sci Technol. 2005;16:1987–96. Soleimani M, Lionheart WRB. Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Meas Sci Technol. 2005;16:1987–96.
18.
Zurück zum Zitat Chen J, Zhang M, Liu Y, Chen J, Li Y. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques. Meas Sci Technol. 2017;28:1–11. Chen J, Zhang M, Liu Y, Chen J, Li Y. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques. Meas Sci Technol. 2017;28:1–11.
19.
Zurück zum Zitat Haddadi MB, Maddahian R. A new algorithm for image reconstruction of electrical capacitance tomography based on inverse heat conduction problems. IEEE Sensors J. 2016;16:1786–94. Haddadi MB, Maddahian R. A new algorithm for image reconstruction of electrical capacitance tomography based on inverse heat conduction problems. IEEE Sensors J. 2016;16:1786–94.
20.
Zurück zum Zitat Lei J, Liu WY, Liu QB, Wang XY, Liu S. Robust dynamic inversion algorithm for the visualization in electrical capacitance tomography. Measurement. 2014;50:305–18. Lei J, Liu WY, Liu QB, Wang XY, Liu S. Robust dynamic inversion algorithm for the visualization in electrical capacitance tomography. Measurement. 2014;50:305–18.
21.
Zurück zum Zitat Lei J, Mu HP, Liu QB, Wang XY, Liu S. Data-driven reconstruction method for electrical capacitance tomography. Neurocomputing. 2018;273:333–45. Lei J, Mu HP, Liu QB, Wang XY, Liu S. Data-driven reconstruction method for electrical capacitance tomography. Neurocomputing. 2018;273:333–45.
22.
Zurück zum Zitat Zhao JY, Xu LJ, Cao Z. Direct image reconstruction for electrical capacitance tomography using shortcut D-Bar method. IEEE Trans Instrum Meas. 2019;68:483–92. Zhao JY, Xu LJ, Cao Z. Direct image reconstruction for electrical capacitance tomography using shortcut D-Bar method. IEEE Trans Instrum Meas. 2019;68:483–92.
23.
Zurück zum Zitat Martin R, Ogarko V, Komatitsch D, Jessell M. Parallel three-dimensional electrical capacitance data imaging using a nonlinear inversion algorithm and Lp norm-based model regularization. Measurement. 2018;128:428–45. Martin R, Ogarko V, Komatitsch D, Jessell M. Parallel three-dimensional electrical capacitance data imaging using a nonlinear inversion algorithm and Lp norm-based model regularization. Measurement. 2018;128:428–45.
24.
Zurück zum Zitat Yang WQ, Peng LH. Image reconstruction algorithms for electrical capacitance tomography. Meas Sci Technol. 2003;14:R1–R13. Yang WQ, Peng LH. Image reconstruction algorithms for electrical capacitance tomography. Meas Sci Technol. 2003;14:R1–R13.
26.
Zurück zum Zitat Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl. 2018;96:302–10. Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl. 2018;96:302–10.
27.
Zurück zum Zitat Jiao Y, Zhang Y, Wang Y, Wang B, Jin J, Wang X. A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface. Int J Neural Syst. 2018;28:1–14. Jiao Y, Zhang Y, Wang Y, Wang B, Jin J, Wang X. A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface. Int J Neural Syst. 2018;28:1–14.
28.
Zurück zum Zitat Wang R, Zhang Y, Zhang L. An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integrated Computer-Aided Engineering. 2015;23:81–97. Wang R, Zhang Y, Zhang L. An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integrated Computer-Aided Engineering. 2015;23:81–97.
29.
Zurück zum Zitat Liu N, Wan L, Zhang Y, Zhou T, Huo H, Fang T. Exploiting convolutional neural networks with deeply local description for remote sensing image classification. IEEE Access. 2018;6:11215–28. Liu N, Wan L, Zhang Y, Zhou T, Huo H, Fang T. Exploiting convolutional neural networks with deeply local description for remote sensing image classification. IEEE Access. 2018;6:11215–28.
30.
Zurück zum Zitat Lan X, Zhang S, Yuen PC, Chellappa R. Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans Image Process. 2018;27:2022–37. Lan X, Zhang S, Yuen PC, Chellappa R. Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans Image Process. 2018;27:2022–37.
31.
Zurück zum Zitat Lan X, Ma AJ, Yuen PC, Chellappa R. Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans Image Process. 2015;24:5826–41.PubMed Lan X, Ma AJ, Yuen PC, Chellappa R. Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans Image Process. 2015;24:5826–41.PubMed
34.
Zurück zum Zitat Feng S, Wang Y, Song K, Wang D, Yu G. Detecting multiple coexisting emotions in microblogs with convolutional neural networks. Cogn Comput. 2017;10:136–55. Feng S, Wang Y, Song K, Wang D, Yu G. Detecting multiple coexisting emotions in microblogs with convolutional neural networks. Cogn Comput. 2017;10:136–55.
35.
Zurück zum Zitat Li R, Gu D, Liu Q, Long Z, Hu H. Semantic scene mapping with spatio-temporal deep neural network for robotic applications. Cogn Comput. 2017;10:260–71. Li R, Gu D, Liu Q, Long Z, Hu H. Semantic scene mapping with spatio-temporal deep neural network for robotic applications. Cogn Comput. 2017;10:260–71.
36.
Zurück zum Zitat Ren P, Sun W, Luo C, Hussain A. Clustering-oriented multiple convolutional neural networks for single image super-resolution. Cogn Comput. 2017;10:165–78. Ren P, Sun W, Luo C, Hussain A. Clustering-oriented multiple convolutional neural networks for single image super-resolution. Cogn Comput. 2017;10:165–78.
37.
Zurück zum Zitat Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput. 2018;10:478–95. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili S, Saadeh H. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput. 2018;10:478–95.
38.
Zurück zum Zitat Huang GB. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7:263–78. Huang GB. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7:263–78.
40.
Zurück zum Zitat Lan XY, Ye M, Shao R, Zhong B, Jain DK, Zhou HY. Online non-negative multi-modality feature template learning for RGB-assisted infrared tracking. IEEE Access. 2019;7:67761–71. Lan XY, Ye M, Shao R, Zhong B, Jain DK, Zhou HY. Online non-negative multi-modality feature template learning for RGB-assisted infrared tracking. IEEE Access. 2019;7:67761–71.
41.
Zurück zum Zitat Yang XS, Deb S, Mishra SK. Multi-species cuckoo search algorithm for global optimization. Cogn Comput. 2018;10:1085–95. Yang XS, Deb S, Mishra SK. Multi-species cuckoo search algorithm for global optimization. Cogn Comput. 2018;10:1085–95.
42.
Zurück zum Zitat Zeng NY, Wang ZD, Zhang H, Alsaadi FE. A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cogn Comput. 2016;8:143–52. Zeng NY, Wang ZD, Zhang H, Alsaadi FE. A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cogn Comput. 2016;8:143–52.
43.
Zurück zum Zitat Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM J Imag Sci. 2009;2:323–43. Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM J Imag Sci. 2009;2:323–43.
44.
Zurück zum Zitat Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning. 2011;3:1–122. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning. 2011;3:1–122.
45.
Zurück zum Zitat Beck A, Teboulle M. A fast iterative shrinkage/thresholding algorithm for linear inverse problems. SIAM J Imag Sci. 2009;2:183–202. Beck A, Teboulle M. A fast iterative shrinkage/thresholding algorithm for linear inverse problems. SIAM J Imag Sci. 2009;2:183–202.
46.
Zurück zum Zitat Hale ET, Yin WT, Zhang Y. Fixed-point continuation for L1-minimization: methodology and convergence. SIAM J Optim. 2008;19:1107–30. Hale ET, Yin WT, Zhang Y. Fixed-point continuation for L1-minimization: methodology and convergence. SIAM J Optim. 2008;19:1107–30.
47.
Zurück zum Zitat Hao BB, Zhu JG. Fast L1 regularized iterative forward backward splitting with adaptive parameter selection for image restoration. J Vis Commun Image Represent. 2017;44:139–47. Hao BB, Zhu JG. Fast L1 regularized iterative forward backward splitting with adaptive parameter selection for image restoration. J Vis Commun Image Represent. 2017;44:139–47.
48.
Zurück zum Zitat Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vision. 2011;40:120–45. Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vision. 2011;40:120–45.
49.
Zurück zum Zitat Figueiredo M, Nowak R, Wright SJ. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Sign Process. 2007;1:586–97. Figueiredo M, Nowak R, Wright SJ. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Sign Process. 2007;1:586–97.
50.
Zurück zum Zitat Li SJ, Qi HR. A Douglas-Rachford splitting approach to compressed sensing image recovery using low-rank regularization. IEEE Trans Image Process. 2015;24:4240–9.PubMed Li SJ, Qi HR. A Douglas-Rachford splitting approach to compressed sensing image recovery using low-rank regularization. IEEE Trans Image Process. 2015;24:4240–9.PubMed
51.
Zurück zum Zitat Yun S, Toh KC. A coordinate gradient descent method for L1-regularized convex minimization. Comput Optim Appl. 2011;48:273–307. Yun S, Toh KC. A coordinate gradient descent method for L1-regularized convex minimization. Comput Optim Appl. 2011;48:273–307.
52.
Zurück zum Zitat Candès EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl. 2008;14:877–905. Candès EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl. 2008;14:877–905.
53.
Zurück zum Zitat Venkatakrishnan S, Bouman C, Wohlberg B. Plug-and-play priors for model based reconstruction. IEEE Global Conference on Signal and Information Processing 2013; pp. 945–948. Venkatakrishnan S, Bouman C, Wohlberg B. Plug-and-play priors for model based reconstruction. IEEE Global Conference on Signal and Information Processing 2013; pp. 945–948.
54.
Zurück zum Zitat Chan SH, Wang X, Elgendy OA. Plug-and-play ADMM for image restoration: fixed point convergence and applications. IEEE Transactions on Computational Imaging. 2017;3:84–98. Chan SH, Wang X, Elgendy OA. Plug-and-play ADMM for image restoration: fixed point convergence and applications. IEEE Transactions on Computational Imaging. 2017;3:84–98.
55.
Zurück zum Zitat Rond A, Giryes R, Elad M. Poisson inverse problems by the plug-and-play scheme. J Vis Commun Image Represent. 2016;41:96–108. Rond A, Giryes R, Elad M. Poisson inverse problems by the plug-and-play scheme. J Vis Commun Image Represent. 2016;41:96–108.
56.
Zurück zum Zitat Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restoration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017; pp. 2808–2817. Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restoration. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017; pp. 2808–2817.
57.
Zurück zum Zitat Brifman A, Romano Y, Elad M. Turning a denoiser into a superresolver using plug and play priors. IEEE International Conference on Image Processing (ICIP) 2016; pp. 1404–1408. Brifman A, Romano Y, Elad M. Turning a denoiser into a superresolver using plug and play priors. IEEE International Conference on Image Processing (ICIP) 2016; pp. 1404–1408.
58.
Zurück zum Zitat Isaac Y, Barthélemy Q, Gouy-Pailler C, Sebag M, Atif J. Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations. Signal Process. 2017;130:389–402. Isaac Y, Barthélemy Q, Gouy-Pailler C, Sebag M, Atif J. Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations. Signal Process. 2017;130:389–402.
59.
Zurück zum Zitat Gopi VP, Palanisamy P, Wahid KA, Babyn P, Cooper D. Multiple regularization based MRI reconstruction. Signal Process. 2014;103:103–13. Gopi VP, Palanisamy P, Wahid KA, Babyn P, Cooper D. Multiple regularization based MRI reconstruction. Signal Process. 2014;103:103–13.
60.
Zurück zum Zitat Wang Q, Wu Z, Jin J, Wang T, Shen Y. Low rank constraint and spatial spectral total variation for hyperspectral image mixed denoising. Signal Process. 2018;142:11–26. Wang Q, Wu Z, Jin J, Wang T, Shen Y. Low rank constraint and spatial spectral total variation for hyperspectral image mixed denoising. Signal Process. 2018;142:11–26.
61.
Zurück zum Zitat Zhang Z, Xiahou J, Bai ZJ, Hancock ER, Zhou D, Chen SB, et al. Discriminative Lasso. Cogn Comput. 2016;8:847–55. Zhang Z, Xiahou J, Bai ZJ, Hancock ER, Zhou D, Chen SB, et al. Discriminative Lasso. Cogn Comput. 2016;8:847–55.
62.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press; 2016. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press; 2016.
63.
Zurück zum Zitat Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.PubMed Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.PubMed
64.
Zurück zum Zitat Bengio Y. Learning deep architectures for AI. Foundations and Trends® in Machine Learning. 2009;2:1–127. Bengio Y. Learning deep architectures for AI. Foundations and Trends® in Machine Learning. 2009;2:1–127.
65.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.PubMed LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.PubMed
66.
Zurück zum Zitat Liu XL, Deng ZD. Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling. Cogn Comput. 2016;10:272–81. Liu XL, Deng ZD. Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling. Cogn Comput. 2016;10:272–81.
67.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.PubMed Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.PubMed
68.
Zurück zum Zitat Li YJ, Zhang T. An introduction to deep learning and case analysis. Beijing: China Machine Press; 2016. Li YJ, Zhang T. An introduction to deep learning and case analysis. Beijing: China Machine Press; 2016.
69.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.
70.
Zurück zum Zitat He XP, Liu B. Deep learning: theory and practice. Beijing: Science Press; 2017. He XP, Liu B. Deep learning: theory and practice. Beijing: Science Press; 2017.
71.
Zurück zum Zitat Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26:3142–55.PubMed Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26:3142–55.PubMed
72.
Zurück zum Zitat Li JP, Zhang ZX, He HG. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput. 2018;10:368–80. Li JP, Zhang ZX, He HG. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput. 2018;10:368–80.
73.
Zurück zum Zitat Wang YF. Computing methods for inverse problems and their applications. Beijing: Higher Education Press; 2007. Wang YF. Computing methods for inverse problems and their applications. Beijing: Higher Education Press; 2007.
Metadaten
Titel
Computational Imaging Method with a Learned Plug-and-Play Prior for Electrical Capacitance Tomography
verfasst von
J. Lei
Q. B. Liu
X. Y. Wang
Publikationsdatum
13.09.2019
Verlag
Springer US
Erschienen in
Cognitive Computation
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09682-8