Skip to main content
Erschienen in: Journal of Nondestructive Evaluation 3/2017

01.09.2017

Computational Time Reversal for NDT Applications Using Experimental Data

verfasst von: Craig Lopatin, Daniel Rabinovich, Dan Givoli, Eli Turkel

Erschienen in: Journal of Nondestructive Evaluation | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model-based non destructive testing (NDT) method is proposed for damage identification in elastic structures, incorporating computational time reversal (TR) analysis. Identification is performed by advancing elastic wave signals, measured at discrete sensor locations, backward in time. In contrast to a previous study, which was purely numerical and employed only synthesized data, here an experimental system with displacement sensors is used to provide physical measurements at the sensor locations. The performance of the system is demonstrated by considering two problems of a thin metal plate in a plane stress state. The first problem, which represents passive damage identification, consists in finding the location of a small impact region from remote measurements. The second problem is the identification of the location of a square hole in the plate. The difficulties one encounters in applying this identification method and ways to overcome them are described. It is concluded that while this is a viable model-based identification method, which may lead, after further development, to a practical NDT procedure, one must be careful when drawing conclusions about its performance based solely on numerical experiments with synthesized data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schmerr, L.W., Song, J.S.: Ultrasonic Nondestructive Evaluation Systems: Models and Measurements. Springer, Berlin (2007)CrossRef Schmerr, L.W., Song, J.S.: Ultrasonic Nondestructive Evaluation Systems: Models and Measurements. Springer, Berlin (2007)CrossRef
2.
Zurück zum Zitat Drinkwater, B.W., Wilcox, P.D.: Ultrasonic arrays for non-destructive evaluation: a review. Nondestruct. Test. Eval. Int. 39, 525–541 (2006) Drinkwater, B.W., Wilcox, P.D.: Ultrasonic arrays for non-destructive evaluation: a review. Nondestruct. Test. Eval. Int. 39, 525–541 (2006)
3.
Zurück zum Zitat Wall, M., Burch, S.F., Lilley, J.: Review of models and simulators for NDT reliability (POD). Insight 51, 612–619 (2009)CrossRef Wall, M., Burch, S.F., Lilley, J.: Review of models and simulators for NDT reliability (POD). Insight 51, 612–619 (2009)CrossRef
4.
Zurück zum Zitat Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, Berlin (2011)CrossRefMATH Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, Berlin (2011)CrossRefMATH
5.
6.
Zurück zum Zitat Stavroulakis, G.E.: Inverse and Crack Identification Problems in Engineering Mechanics. Kluwer, Dordrecht (2001)CrossRefMATH Stavroulakis, G.E.: Inverse and Crack Identification Problems in Engineering Mechanics. Kluwer, Dordrecht (2001)CrossRefMATH
7.
Zurück zum Zitat Liu, G.R., Han, X.: Computational Inverse Techniques in Nondestructive Evaluation. CRC Press, London (2003)CrossRefMATH Liu, G.R., Han, X.: Computational Inverse Techniques in Nondestructive Evaluation. CRC Press, London (2003)CrossRefMATH
8.
Zurück zum Zitat Ali, A.S., Nikolova, N.K., Sangary, N.T.: Near-field microwave non-destructive testing for defect shape and material identification. Nondestruct. Test. Eval. 21, 79–93 (2006)CrossRef Ali, A.S., Nikolova, N.K., Sangary, N.T.: Near-field microwave non-destructive testing for defect shape and material identification. Nondestruct. Test. Eval. 21, 79–93 (2006)CrossRef
9.
Zurück zum Zitat Kalogeropoulos, A., van der Kruk, J., Hugenschmidt, J., Bikowski, J., Bruhwiler, E.: Full-waveform GPR inversion to assess chloride gradients in concrete. Nondestruct. Test. Eval. Int. 57, 74–84 (2013) Kalogeropoulos, A., van der Kruk, J., Hugenschmidt, J., Bikowski, J., Bruhwiler, E.: Full-waveform GPR inversion to assess chloride gradients in concrete. Nondestruct. Test. Eval. Int. 57, 74–84 (2013)
10.
Zurück zum Zitat Goenezen, S., Barbone, P.E., Oberai, A.A.: Solution of the nonlinear elasticity imaging inverse problem: the incompressible case. Comput. Methods Appl. Mech. Eng. 200(13–16), 1406–1420 (2011)MathSciNetCrossRefMATH Goenezen, S., Barbone, P.E., Oberai, A.A.: Solution of the nonlinear elasticity imaging inverse problem: the incompressible case. Comput. Methods Appl. Mech. Eng. 200(13–16), 1406–1420 (2011)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Hicken, J.E., Li, J., Sahni, O., Oberai, A.A.: Adjoint consistency analysis of residual-based variational multiscale methods. J. Comput. Phys. 255, 396–406 (2013)MathSciNetCrossRefMATH Hicken, J.E., Li, J., Sahni, O., Oberai, A.A.: Adjoint consistency analysis of residual-based variational multiscale methods. J. Comput. Phys. 255, 396–406 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cho, Y.: Model-based guided wave NDE: the evolution of guided wave NDE from ‘Magic’ to physically based engineering tool. J. Nondestruc. Eval. 31, 324–338 (2012)CrossRef Cho, Y.: Model-based guided wave NDE: the evolution of guided wave NDE from ‘Magic’ to physically based engineering tool. J. Nondestruc. Eval. 31, 324–338 (2012)CrossRef
13.
Zurück zum Zitat Starek, L., Inman, D.J.: Design of nonproportional damped systems via symmetric positive inverse problems. ASME J. Vib. Acoust. 126, 212–219 (2004)CrossRef Starek, L., Inman, D.J.: Design of nonproportional damped systems via symmetric positive inverse problems. ASME J. Vib. Acoust. 126, 212–219 (2004)CrossRef
14.
Zurück zum Zitat Allison, T.C., Miller, A.K., Inman, D.J.: A time-varying identification method for mixed response measurements. J. Sound Vib. 319, 850–868 (2009)CrossRef Allison, T.C., Miller, A.K., Inman, D.J.: A time-varying identification method for mixed response measurements. J. Sound Vib. 319, 850–868 (2009)CrossRef
15.
Zurück zum Zitat Erturk, A., Inman, D.J.: Parameter identification and optimization in piezoelectric energy harvesting: analytical relations, asymptotic analysis and experimental validations. IMechE J. Syst. Control Eng. 225, 485–496 (2011) Erturk, A., Inman, D.J.: Parameter identification and optimization in piezoelectric energy harvesting: analytical relations, asymptotic analysis and experimental validations. IMechE J. Syst. Control Eng. 225, 485–496 (2011)
16.
Zurück zum Zitat Seher, M., Huthwaite, P., Lowe, M.J.S., Michael, P.B.: Model-based design of low frequency lamb wave EMATs for mode selectivity. J. Nondestruct. Eval. 34, 22-1–22-16 (2015)CrossRef Seher, M., Huthwaite, P., Lowe, M.J.S., Michael, P.B.: Model-based design of low frequency lamb wave EMATs for mode selectivity. J. Nondestruct. Eval. 34, 22-1–22-16 (2015)CrossRef
17.
Zurück zum Zitat Chang, Y.F., Ton, R.C.: Kirchhoff migration of ultrasonic images. Mater. Eval. 59, 413–417 (2001) Chang, Y.F., Ton, R.C.: Kirchhoff migration of ultrasonic images. Mater. Eval. 59, 413–417 (2001)
18.
Zurück zum Zitat Hoegh, K., Khazanovich, L., Ferraro, C., Clayton, D.: Ultrasonic linear array validation via concrete test blocks. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation, Vol. 34, pp. 83–93 (2015) Hoegh, K., Khazanovich, L., Ferraro, C., Clayton, D.: Ultrasonic linear array validation via concrete test blocks. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation, Vol. 34, pp. 83–93 (2015)
19.
Zurück zum Zitat Grohmann, M., Niederleithinger, E., Buske, S.: Geometry determination of a foundation slab using the ultrasonic echo technique and geophysical migration methods. J. Nondestruct. Eval. 35, 17-1–17-13 (2016)CrossRef Grohmann, M., Niederleithinger, E., Buske, S.: Geometry determination of a foundation slab using the ultrasonic echo technique and geophysical migration methods. J. Nondestruct. Eval. 35, 17-1–17-13 (2016)CrossRef
20.
Zurück zum Zitat Fink, M., Wu, F., Cassereau, D., Mallart, R.: Imaging through inhomogeneous media using time reversal mirrors. Ultrason. Imaging 13, 179–199 (1991)CrossRef Fink, M., Wu, F., Cassereau, D., Mallart, R.: Imaging through inhomogeneous media using time reversal mirrors. Ultrason. Imaging 13, 179–199 (1991)CrossRef
21.
Zurück zum Zitat Givoli, D.: Time reversal as a computational tool in acoustics and elastodynamics. J. Comput. Acoust. 22, 1430001-1–1430001-40 (2014)MathSciNetCrossRefMATH Givoli, D.: Time reversal as a computational tool in acoustics and elastodynamics. J. Comput. Acoust. 22, 1430001-1–1430001-40 (2014)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Derveaux, G., Papanicolaou, G., Tsogka, C.: Time reversal imaging for sensor networks with optimal compensation in time. J. Acoust. Soc. Am. 121, 2071–2085 (2007)CrossRef Derveaux, G., Papanicolaou, G., Tsogka, C.: Time reversal imaging for sensor networks with optimal compensation in time. J. Acoust. Soc. Am. 121, 2071–2085 (2007)CrossRef
23.
Zurück zum Zitat Zumpano, G., Meo, M.: A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures—a simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007)CrossRefMATH Zumpano, G., Meo, M.: A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures—a simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007)CrossRefMATH
24.
Zurück zum Zitat Buerkle, A., Sarabandi, K.: Non-destructive evaluation of elastic targets using acousto-electromagnetic wave interaction and time reversal focusing. IEEE Trans. Antennas Propag. 57, 3628–3637 (2009)CrossRef Buerkle, A., Sarabandi, K.: Non-destructive evaluation of elastic targets using acousto-electromagnetic wave interaction and time reversal focusing. IEEE Trans. Antennas Propag. 57, 3628–3637 (2009)CrossRef
25.
Zurück zum Zitat Bavu, E., Berry, A.: High-resolution imaging of sound sources in free field using a numerical time-reversal sink. Acta Acust. United Acust. 95, 595–606 (2009)CrossRef Bavu, E., Berry, A.: High-resolution imaging of sound sources in free field using a numerical time-reversal sink. Acta Acust. United Acust. 95, 595–606 (2009)CrossRef
26.
Zurück zum Zitat Reyes-Rodriguez, S., Lei, N., Crowgey, B., Udpa, L., Udpa, S.S.: Time reversal and microwave techniques for solving inverse problem in non-destructive evaluation. Nondestruct. Test. Eval. Int. 62, 106–114 (2014) Reyes-Rodriguez, S., Lei, N., Crowgey, B., Udpa, L., Udpa, S.S.: Time reversal and microwave techniques for solving inverse problem in non-destructive evaluation. Nondestruct. Test. Eval. Int. 62, 106–114 (2014)
27.
Zurück zum Zitat Fan, C.G., Pan, M.C., Luo, F.L., Drinkwater, B.W.: Multi-frequency time-reversal-based imaging for ultrasonic nondestructive evaluation using full matrix capture. IEEE Trans Ultrason. Ferroelectr. Freq. Control 61, 2067–2074 (2014)CrossRef Fan, C.G., Pan, M.C., Luo, F.L., Drinkwater, B.W.: Multi-frequency time-reversal-based imaging for ultrasonic nondestructive evaluation using full matrix capture. IEEE Trans Ultrason. Ferroelectr. Freq. Control 61, 2067–2074 (2014)CrossRef
28.
Zurück zum Zitat Givoli, D., Turkel, E.: Time reversal with partial information for wave refocusing and scatterer identification. Comput. Methods Appl. Mech. Eng. 213–216, 223–242 (2012)MathSciNetCrossRefMATH Givoli, D., Turkel, E.: Time reversal with partial information for wave refocusing and scatterer identification. Comput. Methods Appl. Mech. Eng. 213–216, 223–242 (2012)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Levi, I., Turkel, E., Givoli, D.: Time reversal for elastic wave refocusing and scatterer location recovery. J. Comput. Acoust. 23, 1450013-1–1450013-29 (2015)MathSciNetCrossRefMATH Levi, I., Turkel, E., Givoli, D.: Time reversal for elastic wave refocusing and scatterer location recovery. J. Comput. Acoust. 23, 1450013-1–1450013-29 (2015)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Hughes, T.J.R.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987)MATH Hughes, T.J.R.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987)MATH
34.
Zurück zum Zitat Rabinovich, D., Givoli, D., Vigdergauz, S.: Crack identification by ‘arrival time’ using XFEM and a genetic algorithm. Int. J. Numer. Methods Eng. 77, 337–359 (2009)MathSciNetCrossRefMATH Rabinovich, D., Givoli, D., Vigdergauz, S.: Crack identification by ‘arrival time’ using XFEM and a genetic algorithm. Int. J. Numer. Methods Eng. 77, 337–359 (2009)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Sun, H., Waisman, H., Betti, R.: Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm. Int. J. Numer. Methods Eng. 95(10), 871–900 (2013)MathSciNetCrossRefMATH Sun, H., Waisman, H., Betti, R.: Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm. Int. J. Numer. Methods Eng. 95(10), 871–900 (2013)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Sun, H., Waisman, H., Betti, R.: A multiscale flaw detection algorithm based on XFEM. Int. J. Numer. Methods Eng. 100(7), 477–503 (2014)CrossRefMATH Sun, H., Waisman, H., Betti, R.: A multiscale flaw detection algorithm based on XFEM. Int. J. Numer. Methods Eng. 100(7), 477–503 (2014)CrossRefMATH
37.
Zurück zum Zitat Sun, H., Waisman, H., Betti, R.: A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers. Int. J. Numer. Methods Eng. 105, 1014–1040 (2016)MathSciNetCrossRef Sun, H., Waisman, H., Betti, R.: A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers. Int. J. Numer. Methods Eng. 105, 1014–1040 (2016)MathSciNetCrossRef
38.
Zurück zum Zitat Schillinger, D., Rank, E.: An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200, 47–48 (2011)MathSciNetCrossRefMATH Schillinger, D., Rank, E.: An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200, 47–48 (2011)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Amitt, E., Givoli, D., Turkel, E.: Combined arrival-time imaging and time reversal for scatterer identification. Comput. Methods Appl. Mech. Eng. 313, 279–302 (2017)MathSciNetCrossRef Amitt, E., Givoli, D., Turkel, E.: Combined arrival-time imaging and time reversal for scatterer identification. Comput. Methods Appl. Mech. Eng. 313, 279–302 (2017)MathSciNetCrossRef
Metadaten
Titel
Computational Time Reversal for NDT Applications Using Experimental Data
verfasst von
Craig Lopatin
Daniel Rabinovich
Dan Givoli
Eli Turkel
Publikationsdatum
01.09.2017
Verlag
Springer US
Erschienen in
Journal of Nondestructive Evaluation / Ausgabe 3/2017
Print ISSN: 0195-9298
Elektronische ISSN: 1573-4862
DOI
https://doi.org/10.1007/s10921-017-0424-6

Weitere Artikel der Ausgabe 3/2017

Journal of Nondestructive Evaluation 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.