Skip to main content

2020 | OriginalPaper | Buchkapitel

26. Computer Vision-Based Monitoring of Ship Navigation for Bridge Collision Risk Assessment

verfasst von : Xiao-Wei Ye, Tao Jin, Peng-Peng Ang

Erschienen in: Machine Vision and Navigation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the increase of frequency and weight of commercial ship trips in waterways, bridges are more vulnerable to ship–bridge collision accidents. There are plenty of reports of such cases all over the world, leading to millions of economic losses. For ancient bridges, irreparable damage might come in the sense of cultural value except for economic losses. The development of computer vision-based technology provides an active defense method to prevent damage in advance. This chapter presents a computer vision-based method for ship–bridge collision assessment and warning for an ancient arch bridge across the Beijing–Hangzhou Grand Canal in Hangzhou, China. The structural characteristics and current status of the arch bridge are analyzed. The traffic volume and parameters of passing ships including the velocity and weight are investigated. The water area in both sides of the bridge is divided into three different security districts corresponding to different warning levels. Image processing techniques are exploited to identify the types of ships for tracking, and the risk of ship–bridge collision is assessed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vu, K. A. T., & Stewart, M. G. (2000). Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety, 22(4), 313–333.CrossRef Vu, K. A. T., & Stewart, M. G. (2000). Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety, 22(4), 313–333.CrossRef
2.
Zurück zum Zitat Choe, D. E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering & System Safety, 93(3), 383–393.CrossRef Choe, D. E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering & System Safety, 93(3), 383–393.CrossRef
3.
Zurück zum Zitat Li, J. B., Gong, J. X., & Wang, L. C. (2009). Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Construction and Building Materials, 23(7), 2653–2663.CrossRef Li, J. B., Gong, J. X., & Wang, L. C. (2009). Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Construction and Building Materials, 23(7), 2653–2663.CrossRef
4.
Zurück zum Zitat Simon, J., Bracci, J. M., & Gardoni, P. (2010). Seismic response and fragility of deteriorated reinforced concrete bridges. Journal of Structural Engineering, 136(10), 1273–1281.CrossRef Simon, J., Bracci, J. M., & Gardoni, P. (2010). Seismic response and fragility of deteriorated reinforced concrete bridges. Journal of Structural Engineering, 136(10), 1273–1281.CrossRef
5.
Zurück zum Zitat Alipour, A., Shafei, B., & Shinozuka, M. (2011). Performance evaluation of deteriorating highway bridges located in high seismic areas. Journal of Bridge Engineering, 16(5), 597–611.CrossRef Alipour, A., Shafei, B., & Shinozuka, M. (2011). Performance evaluation of deteriorating highway bridges located in high seismic areas. Journal of Bridge Engineering, 16(5), 597–611.CrossRef
6.
Zurück zum Zitat Zhu, L., Liu, W. Q., Fang, H., Chen, J. Y., Zhuang, Y., & Han, J. (2019). Design and simulation of innovative foam-filled lattice composite bumper system for bridge protection in ship collisions. Composites Part B: Engineering, 157, 24–35.CrossRef Zhu, L., Liu, W. Q., Fang, H., Chen, J. Y., Zhuang, Y., & Han, J. (2019). Design and simulation of innovative foam-filled lattice composite bumper system for bridge protection in ship collisions. Composites Part B: Engineering, 157, 24–35.CrossRef
8.
Zurück zum Zitat Fang, H., Mao, Y. F., Liu, W. Q., Zhu, L., & Zhang, B. (2016). Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision. Composite Structures, 158, 187–198.CrossRef Fang, H., Mao, Y. F., Liu, W. Q., Zhu, L., & Zhang, B. (2016). Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision. Composite Structures, 158, 187–198.CrossRef
9.
Zurück zum Zitat Liu, J. C., & Gu, Y. N. (2002). Simulation of the whole process of ship-bridge collision. China Ocean Engineering, 16(3), 369–382. Liu, J. C., & Gu, Y. N. (2002). Simulation of the whole process of ship-bridge collision. China Ocean Engineering, 16(3), 369–382.
10.
Zurück zum Zitat Minorsky, V. U. (1958). An analysis of ship collisions with reference to protection of nuclear power plants (No. NP-7475). Journal of Ship Research, 3(2), 1–4. Minorsky, V. U. (1958). An analysis of ship collisions with reference to protection of nuclear power plants (No. NP-7475). Journal of Ship Research, 3(2), 1–4.
11.
Zurück zum Zitat Meir-Dornberg, K. E. (1983). Ship collisions, safety zones, and loading assumptions for structures in inland waterways. VDI-Berichte, 496(1), 1–9. Meir-Dornberg, K. E. (1983). Ship collisions, safety zones, and loading assumptions for structures in inland waterways. VDI-Berichte, 496(1), 1–9.
12.
Zurück zum Zitat Sha, Y. Y., & Hao, H. (2012). Nonlinear finite element analysis of barge collision with a single bridge pier. Engineering Structures, 41, 63–76.CrossRef Sha, Y. Y., & Hao, H. (2012). Nonlinear finite element analysis of barge collision with a single bridge pier. Engineering Structures, 41, 63–76.CrossRef
13.
Zurück zum Zitat Fan, W., & Yuan, W. C. (2014). Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil-structure interaction. Ocean Engineering, 91, 11–27.CrossRef Fan, W., & Yuan, W. C. (2014). Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil-structure interaction. Ocean Engineering, 91, 11–27.CrossRef
14.
Zurück zum Zitat Wan, Y. L., Zhu, L., Fang, H., Liu, W. Q., & Mao, Y. F. (2019). Experimental testing and numerical simulations of ship impact on axially loaded reinforced concrete piers. International Journal of Impact Engineering, 125, 246–262.CrossRef Wan, Y. L., Zhu, L., Fang, H., Liu, W. Q., & Mao, Y. F. (2019). Experimental testing and numerical simulations of ship impact on axially loaded reinforced concrete piers. International Journal of Impact Engineering, 125, 246–262.CrossRef
17.
Zurück zum Zitat Consolazio, G. R., & Cowan, D. R. (2005). Numerically efficient dynamic analysis of barge collisions with bridge piers. Journal of Structural Engineering, 131(8), 1256–1266.CrossRef Consolazio, G. R., & Cowan, D. R. (2005). Numerically efficient dynamic analysis of barge collisions with bridge piers. Journal of Structural Engineering, 131(8), 1256–1266.CrossRef
18.
Zurück zum Zitat Davidson, M. T., Consolazio, G. R., & Getter, D. J. (2010). Dynamic amplification of pier column internal forces due to barge-bridge collision. Transportation Research Record, 2172, 11–22.CrossRef Davidson, M. T., Consolazio, G. R., & Getter, D. J. (2010). Dynamic amplification of pier column internal forces due to barge-bridge collision. Transportation Research Record, 2172, 11–22.CrossRef
19.
Zurück zum Zitat Consolazio, G. R., Davidson, M. T., & Cowan, D. R. (2009). Barge bow force-deformation relationships for barge-bridge collision analysis. Transportation Research Record, 2131, 3–14.CrossRef Consolazio, G. R., Davidson, M. T., & Cowan, D. R. (2009). Barge bow force-deformation relationships for barge-bridge collision analysis. Transportation Research Record, 2131, 3–14.CrossRef
20.
Zurück zum Zitat Yuan, P., & Harik, I. E. (2008). One-dimensional model for multi-barge flotillas impacting bridge piers. Computer-Aided Civil and Infrastructure Engineering, 23(6), 437–447.CrossRef Yuan, P., & Harik, I. E. (2008). One-dimensional model for multi-barge flotillas impacting bridge piers. Computer-Aided Civil and Infrastructure Engineering, 23(6), 437–447.CrossRef
21.
Zurück zum Zitat Zhu, B., Chen, R. P., Chen, Y. M., & Zhang, Z. H. (2012). Impact model tests and simplified analysis for flexible pile-supported protective structures withstanding vessel collisions. Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(2), 86–96.CrossRef Zhu, B., Chen, R. P., Chen, Y. M., & Zhang, Z. H. (2012). Impact model tests and simplified analysis for flexible pile-supported protective structures withstanding vessel collisions. Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(2), 86–96.CrossRef
22.
Zurück zum Zitat Xu, Y., & Brownjohn, J. M. W. (2018). Review of machine-vision based methodologies for displacement measurement in civil structures. Journal of Civil Structural Health Monitoring, 8(1), 91–110.CrossRef Xu, Y., & Brownjohn, J. M. W. (2018). Review of machine-vision based methodologies for displacement measurement in civil structures. Journal of Civil Structural Health Monitoring, 8(1), 91–110.CrossRef
23.
Zurück zum Zitat Feng, D. M., Feng, M. Q., Ozer, E., & Fukuda, Y. (2015). A vision-based sensor for noncontact structural displacement measurement. Sensors-Basel, 15(7), 16557–16575.CrossRef Feng, D. M., Feng, M. Q., Ozer, E., & Fukuda, Y. (2015). A vision-based sensor for noncontact structural displacement measurement. Sensors-Basel, 15(7), 16557–16575.CrossRef
24.
Zurück zum Zitat Feng, D. M., & Feng, M. Q. (2017). Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement. Journal of Sound and Vibration, 406, 15–28.CrossRef Feng, D. M., & Feng, M. Q. (2017). Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement. Journal of Sound and Vibration, 406, 15–28.CrossRef
25.
Zurück zum Zitat Feng, D. M., & Feng, M. Q. (2017). Experimental validation of cost-effective vision-based structural health monitoring. Mechanical Systems and Signal Processing, 88, 199–211.CrossRef Feng, D. M., & Feng, M. Q. (2017). Experimental validation of cost-effective vision-based structural health monitoring. Mechanical Systems and Signal Processing, 88, 199–211.CrossRef
26.
Zurück zum Zitat Feng, D. M., Scarangello, T., Feng, M. Q., & Ye, Q. (2017). Cable tension force estimate using novel noncontact vision-based sensor. Measurement, 99, 44–52.CrossRef Feng, D. M., Scarangello, T., Feng, M. Q., & Ye, Q. (2017). Cable tension force estimate using novel noncontact vision-based sensor. Measurement, 99, 44–52.CrossRef
27.
Zurück zum Zitat Dong, C. Z., Ye, X. W., & Jin, T. (2018). Identification of structural dynamic characteristics based on machine vision technology. Measurement, 126, 405–416.CrossRef Dong, C. Z., Ye, X. W., & Jin, T. (2018). Identification of structural dynamic characteristics based on machine vision technology. Measurement, 126, 405–416.CrossRef
28.
Zurück zum Zitat Wu, L. J., Casciati, F., & Casciati, S. (2014). Dynamic testing of a laboratory model via vision-based sensing. Engineering Structures, 60, 113–125.CrossRef Wu, L. J., Casciati, F., & Casciati, S. (2014). Dynamic testing of a laboratory model via vision-based sensing. Engineering Structures, 60, 113–125.CrossRef
29.
Zurück zum Zitat Khuc, T., & Catbas, F. N. (2017). Computer vision-based displacement and vibration monitoring without using physical target on structures. Structure and Infrastructure Engineering, 13(4), 505–516.CrossRef Khuc, T., & Catbas, F. N. (2017). Computer vision-based displacement and vibration monitoring without using physical target on structures. Structure and Infrastructure Engineering, 13(4), 505–516.CrossRef
30.
Zurück zum Zitat Tian, L., & Pan, B. (2016). Remote bridge deflection measurement using an advanced video deflectometer and actively illuminated LED targets. Sensors-Basel, 16(9), 1344.CrossRef Tian, L., & Pan, B. (2016). Remote bridge deflection measurement using an advanced video deflectometer and actively illuminated LED targets. Sensors-Basel, 16(9), 1344.CrossRef
31.
Zurück zum Zitat Lee, J. J., Cho, S., Shinozuka, M., Yun, C. B., Lee, C. G., & Lee, W. T. (2006). Evaluation of bridge load carrying capacity based on dynamic displacement measurement using real-time image processing techniques. International Journal of Streel Structures, 6(5), 377–385. Lee, J. J., Cho, S., Shinozuka, M., Yun, C. B., Lee, C. G., & Lee, W. T. (2006). Evaluation of bridge load carrying capacity based on dynamic displacement measurement using real-time image processing techniques. International Journal of Streel Structures, 6(5), 377–385.
36.
Zurück zum Zitat Jiao, J., Zhang, Y., Sun, H., Yang, X., Gao, X., Hong, W., Fu, K., & Sun, X. (2018). A densely connected end-to-end neural network for multiscale and multiscene SAI ship detection. IEEE Access, 6, 20881–20892.CrossRef Jiao, J., Zhang, Y., Sun, H., Yang, X., Gao, X., Hong, W., Fu, K., & Sun, X. (2018). A densely connected end-to-end neural network for multiscale and multiscene SAI ship detection. IEEE Access, 6, 20881–20892.CrossRef
37.
Zurück zum Zitat Liu, G., Zhang, Y. S., Zheng, X. W., Sun, X., Fu, K., & Wang, H. Q. (2014). A new method on inshore ship detection in high-resolution satellite images using shape and context information. IEEE Geoscience and Remote Sensing Letters, 11(3), 617–621.CrossRef Liu, G., Zhang, Y. S., Zheng, X. W., Sun, X., Fu, K., & Wang, H. Q. (2014). A new method on inshore ship detection in high-resolution satellite images using shape and context information. IEEE Geoscience and Remote Sensing Letters, 11(3), 617–621.CrossRef
38.
Zurück zum Zitat Li, S., Zhou, Z. Q., Wang, B., & Wu, F. (2016). A novel inshore ship detection via ship head classification and body boundary determination. IEEE Geoscience and Remote Sensing Letters, 13(12), 1920–1924.CrossRef Li, S., Zhou, Z. Q., Wang, B., & Wu, F. (2016). A novel inshore ship detection via ship head classification and body boundary determination. IEEE Geoscience and Remote Sensing Letters, 13(12), 1920–1924.CrossRef
39.
Zurück zum Zitat Liu, W. C., Ma, L., & Chen, H. (2018). Arbitrary-oriented ship detection framework in optical remote-sensing images. IEEE Geoscience and Remote Sensing Letters, 15(6), 937–941.CrossRef Liu, W. C., Ma, L., & Chen, H. (2018). Arbitrary-oriented ship detection framework in optical remote-sensing images. IEEE Geoscience and Remote Sensing Letters, 15(6), 937–941.CrossRef
40.
Zurück zum Zitat Liu, Z. Y., Zhou, F. G., Bai, X. Z., & Yu, X. Y. (2013). Automatic detection of ship target and motion direction in visual images. International Journal of Electronics, 100(1), 94–111.CrossRef Liu, Z. Y., Zhou, F. G., Bai, X. Z., & Yu, X. Y. (2013). Automatic detection of ship target and motion direction in visual images. International Journal of Electronics, 100(1), 94–111.CrossRef
41.
Zurück zum Zitat Lin, H. N., Shi, Z. W., & Zou, Z. X. (2017). Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images. IEEE Geoscience and Remote Sensing Letters, 14(10), 1665–1669.CrossRef Lin, H. N., Shi, Z. W., & Zou, Z. X. (2017). Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images. IEEE Geoscience and Remote Sensing Letters, 14(10), 1665–1669.CrossRef
Metadaten
Titel
Computer Vision-Based Monitoring of Ship Navigation for Bridge Collision Risk Assessment
verfasst von
Xiao-Wei Ye
Tao Jin
Peng-Peng Ang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-22587-2_26

Neuer Inhalt