Skip to main content

2019 | OriginalPaper | Buchkapitel

14. Concept of Pseudo-Boiling

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the area of pressures above the thermodynamic critical \( \left( {p > p_{c} } \right) \), pure substances are known to behave like single-phase liquids with locally equilibrium properties. This range of parameters is called the area of supercritical pressures (SCP), and the medium in it, a supercritical fluid (SCF) [1]. The area of supercritical pressures had become the subject of interest in thermal engineering in connection with the attempts to solve the principal problem of enhancing the initial vapor parameters in the 1960s. SCFs are considered as promising coolants due to their specific properties, and at present SCP power units play the key role in heat power engineering of advanced countries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The expression for the compressibility factor is written for the case of a diatomic gas.
 
Literatur
1.
Zurück zum Zitat Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME Press, New YorkCrossRef Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME Press, New YorkCrossRef
2.
Zurück zum Zitat Oka Y (2003) Research and development of the supercritical pressure light water cooled reactors. In: Proceedings of the 10th international topical meeting on nuclear thermal hydraulics (NURETH-10). Seoul, Korea, 5–9 Oct Oka Y (2003) Research and development of the supercritical pressure light water cooled reactors. In: Proceedings of the 10th international topical meeting on nuclear thermal hydraulics (NURETH-10). Seoul, Korea, 5–9 Oct
3.
Zurück zum Zitat Kurganov VA (1998) Heat transfer and pressure drop in tubes under supercritical pressure of the coolant. Part 1: specifics of the thermophysical properties, hydrodynamics, and heat transfer of the liquid. Regimes of normal heat transfer. Therm Eng 45(3):177–185 Kurganov VA (1998) Heat transfer and pressure drop in tubes under supercritical pressure of the coolant. Part 1: specifics of the thermophysical properties, hydrodynamics, and heat transfer of the liquid. Regimes of normal heat transfer. Therm Eng 45(3):177–185
4.
Zurück zum Zitat Goldman K (1954) Heat transfer to supercritical water and other fluids with temperature dependent properties. Chem Eng Prog Symp Ser 50(11):106–110 Goldman K (1954) Heat transfer to supercritical water and other fluids with temperature dependent properties. Chem Eng Prog Symp Ser 50(11):106–110
5.
Zurück zum Zitat Hendricks RC, Graham RW, Hsu Y, Medeiros AA (1962) Correlation of hydrogen heat transfer in boiling and supercritical pressure states. ARS J 32(2):244–252CrossRef Hendricks RC, Graham RW, Hsu Y, Medeiros AA (1962) Correlation of hydrogen heat transfer in boiling and supercritical pressure states. ARS J 32(2):244–252CrossRef
6.
Zurück zum Zitat Weigand B (2015) Analytical methods for heat transfer and fluid flow problems. Springer Weigand B (2015) Analytical methods for heat transfer and fluid flow problems. Springer
7.
Zurück zum Zitat Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773CrossRef Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773CrossRef
8.
Zurück zum Zitat Corino ER, Brodkey RS (1969) A visual investigation of the wall region in turbulent flow. J Fluid Mech 37:1–30CrossRef Corino ER, Brodkey RS (1969) A visual investigation of the wall region in turbulent flow. J Fluid Mech 37:1–30CrossRef
9.
Zurück zum Zitat Blackwelder RF, Kaplan RF (1976) On the wall structure of the turbulent boundary layer. J Fluid Mech 76(Pt. 1):89–112CrossRef Blackwelder RF, Kaplan RF (1976) On the wall structure of the turbulent boundary layer. J Fluid Mech 76(Pt. 1):89–112CrossRef
10.
Zurück zum Zitat Sternberg JA (1962) Theory for the viscous sub-layer along a smooth boundary. J Fluid Mech 13:241–271CrossRef Sternberg JA (1962) Theory for the viscous sub-layer along a smooth boundary. J Fluid Mech 13:241–271CrossRef
11.
Zurück zum Zitat Schubert G, Corcos GM (1967) The dynamics of turbulence near a wall according to a linear model. J Fluid Mech 29:113–135CrossRef Schubert G, Corcos GM (1967) The dynamics of turbulence near a wall according to a linear model. J Fluid Mech 29:113–135CrossRef
12.
Zurück zum Zitat Danckwetrs PV (1951) Significance of liquid-film coefficients in gas absorptions. Ind Eng Chem 43:1460–1467CrossRef Danckwetrs PV (1951) Significance of liquid-film coefficients in gas absorptions. Ind Eng Chem 43:1460–1467CrossRef
13.
Zurück zum Zitat Tomas LC, Cingo PI, Chung B (1975) The surface rejuvenation model for turbulent convective transport. Chem Eng Sci 30:1239–1242CrossRef Tomas LC, Cingo PI, Chung B (1975) The surface rejuvenation model for turbulent convective transport. Chem Eng Sci 30:1239–1242CrossRef
14.
Zurück zum Zitat Carslaw HS, Jaeger JC (1992) Conduction of heat in solids. Clarendon Press, London, OxfordMATH Carslaw HS, Jaeger JC (1992) Conduction of heat in solids. Clarendon Press, London, OxfordMATH
15.
Zurück zum Zitat Tomas LC (1976) The surface renewal approach to turbulence. Chem Eng Sci 31:787–794CrossRef Tomas LC (1976) The surface renewal approach to turbulence. Chem Eng Sci 31:787–794CrossRef
16.
Zurück zum Zitat Gudkov VI, Motulevich VP (1984) Relative correspondence method and its application in measurement practice. J Eng Phys 47(2):922–928CrossRef Gudkov VI, Motulevich VP (1984) Relative correspondence method and its application in measurement practice. J Eng Phys 47(2):922–928CrossRef
17.
Zurück zum Zitat Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin, Heidelberg, New YorkCrossRef Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin, Heidelberg, New YorkCrossRef
18.
Zurück zum Zitat Taler D (2017) Simple power-type heat transfer correlations for turbulent pipe flow in tubes 26(4):339–348 Taler D (2017) Simple power-type heat transfer correlations for turbulent pipe flow in tubes 26(4):339–348
19.
Zurück zum Zitat Kutateladze SS, Leontiev AI (1964) Turbulent boundary layers in compressible gases. Academic Press and Arnold (translated and exquisitely commented by D. B. Spalding) Kutateladze SS, Leontiev AI (1964) Turbulent boundary layers in compressible gases. Academic Press and Arnold (translated and exquisitely commented by D. B. Spalding)
20.
Zurück zum Zitat Yener Y, Kakac S (2008) Heat conduction, 4th edn. CRC Press Yener Y, Kakac S (2008) Heat conduction, 4th edn. CRC Press
21.
Zurück zum Zitat Zudin YB (2012) Theory of periodic conjugate heat transfer, 2 edn. Springer Zudin YB (2012) Theory of periodic conjugate heat transfer, 2 edn. Springer
22.
Zurück zum Zitat Zudin YB (2016) Theory of periodic conjugate heat transfer, 3 edn. Springer Zudin YB (2016) Theory of periodic conjugate heat transfer, 3 edn. Springer
23.
Zurück zum Zitat Kantorovich LV, Krylov VI (1958) Approximate methods of higher analysis. P. Noordho, Groningen, The NetherlandsMATH Kantorovich LV, Krylov VI (1958) Approximate methods of higher analysis. P. Noordho, Groningen, The NetherlandsMATH
24.
Zurück zum Zitat Spalding DB (1963) Convective mass transfer—an introduction. McGraw Hill Spalding DB (1963) Convective mass transfer—an introduction. McGraw Hill
25.
Zurück zum Zitat Vigdorovich II (2015) New formulations of the temperature defect law for turbulent boundary layers on a plate. Int J Heat Mass Transf 84(5):653–659CrossRef Vigdorovich II (2015) New formulations of the temperature defect law for turbulent boundary layers on a plate. Int J Heat Mass Transf 84(5):653–659CrossRef
26.
Zurück zum Zitat Barulin YD, Vikhrev YV, Dyadyakin BV, Koblyakov AN, Sinitsyn IT (1971) Heat transfer during turbulent flow in vertical and horizontal tubes containing water with supercritical state parameters. J Eng Phys 20(5):665–666 Barulin YD, Vikhrev YV, Dyadyakin BV, Koblyakov AN, Sinitsyn IT (1971) Heat transfer during turbulent flow in vertical and horizontal tubes containing water with supercritical state parameters. J Eng Phys 20(5):665–666
27.
Zurück zum Zitat Giarratano PJ, Jones MC (1975) Deterioration of heat transfer to supercritical helium. Int J Heat Mass Transf 18(5):649–653CrossRef Giarratano PJ, Jones MC (1975) Deterioration of heat transfer to supercritical helium. Int J Heat Mass Transf 18(5):649–653CrossRef
Metadaten
Titel
Concept of Pseudo-Boiling
verfasst von
Yuri B. Zudin
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13815-8_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.