Skip to main content

2017 | OriginalPaper | Buchkapitel

Conceptual Design of Energy Efficient Lower Extremity Exoskeleton for Human Motion Enhancement and Medical Assistance

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper describes conceptual design and control strategies for a new fully autonomous lower limb exoskeleton system. The main advantage of the system is its ability to decouple the weight/mass carrying function of the system from its forward motion function to reduce power consumption, weight and size of the propulsion motors. An efficient human machine interface has been achieved by means two sets of sensors: one (flexible sensors) to monitor subject leg’s shank and ankle movements and the second to monitor subject’s foot pressure. The weight is supported by a couple of passive pneumatic cylinders with electronically controlled ports. Joint motors of the exoskeleton then are only left to timely drive links of the exoskeleton when the legs take step. Therefore, motors consume less electrical energy and are small in size. In contrast to other existing exoskeleton designs, the motor batteries are able to sustain the energy supply for a longer travel distance before discharging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Banala, S., Agrawal, S., & Scholz, J. (2009). Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 2–8.CrossRef Banala, S., Agrawal, S., & Scholz, J. (2009). Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 2–8.CrossRef
Zurück zum Zitat De Santis, A., Siciliano, B., De Luca, A., & Bicchi, A. (2008). An atlas of physical human-robot interaction. Mechanisms and Machines Theory, 43, 253–270.CrossRefMATH De Santis, A., Siciliano, B., De Luca, A., & Bicchi, A. (2008). An atlas of physical human-robot interaction. Mechanisms and Machines Theory, 43, 253–270.CrossRefMATH
Zurück zum Zitat Ghan, J., & Kazerooni, H. (2006). System identification for the Berkeley lower extremity exoskeleton (BLEEX). In Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 3477–3484. Ghan, J., & Kazerooni, H. (2006). System identification for the Berkeley lower extremity exoskeleton (BLEEX). In Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 3477–3484.
Zurück zum Zitat Heng, C., Jun, Z., Chunming, X., Hong, Z., Xiao, C., & Yu, W. (2010). Design and control of a hydraulic-actuated leg exoskeleton for load-carrying augmentation. In Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), Part I, LNAI 6424, pp. 590–599. Heng, C., Jun, Z., Chunming, X., Hong, Z., Xiao, C., & Yu, W. (2010). Design and control of a hydraulic-actuated leg exoskeleton for load-carrying augmentation. In Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), Part I, LNAI 6424, pp. 590–599.
Zurück zum Zitat Heng, C., Zhengyang, L., Jun, Z., Yu, W., Wei, W. (2009). Design frame of a leg exoskeleton for load-carrying augmentation. In Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 426–431. Heng, C., Zhengyang, L., Jun, Z., Yu, W., Wei, W. (2009). Design frame of a leg exoskeleton for load-carrying augmentation. In Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 426–431.
Zurück zum Zitat Ikeuchi, Y., Ashihara J., Hiki Y., Kudoh H., & Noda T. (2009). Walking assist device with bodyweight support system. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4073–4079. Ikeuchi, Y., Ashihara J., Hiki Y., Kudoh H., & Noda T. (2009). Walking assist device with bodyweight support system. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4073–4079.
Zurück zum Zitat Iqbal, J., & Baizid, K. (2015). Stroke rehabilitation using exoskeleton-based robotic exercisers mini review. Biomedical Research, 26(1), 197–201. Iqbal, J., & Baizid, K. (2015). Stroke rehabilitation using exoskeleton-based robotic exercisers mini review. Biomedical Research, 26(1), 197–201.
Zurück zum Zitat Jamwal, P. K., Sheng, Q. X., Shahid, H., & John, G. P. (2014). An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64–75.CrossRef Jamwal, P. K., Sheng, Q. X., Shahid, H., & John, G. P. (2014). An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64–75.CrossRef
Zurück zum Zitat Jezernik, S., Colombo, G., Keller, T., Frueh, H., & Morari, M. (2003). Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation, 6, 108–115.CrossRef Jezernik, S., Colombo, G., Keller, T., Frueh, H., & Morari, M. (2003). Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation, 6, 108–115.CrossRef
Zurück zum Zitat Kao, P., & Ferris, D. P. (2009). Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture., 29, 230–236.CrossRef Kao, P., & Ferris, D. P. (2009). Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture., 29, 230–236.CrossRef
Zurück zum Zitat Kasaoka, K., & Sankai, Y. (2001). Predictive control estimating operator’s intention for stepping-up motion by exo-skeleton type power assist system HAL. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1578–1583. Kasaoka, K., & Sankai, Y. (2001). Predictive control estimating operator’s intention for stepping-up motion by exo-skeleton type power assist system HAL. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1578–1583.
Zurück zum Zitat Kawabata, T., Satoh, H., & Sankai, Y. (2009). Working posture control of robot suit HAL for reducing structural stress. In Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2013–2018. Kawabata, T., Satoh, H., & Sankai, Y. (2009). Working posture control of robot suit HAL for reducing structural stress. In Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2013–2018.
Zurück zum Zitat Kawamoto, H., & Sankai, Y. (2002). Comfortable power assist control method for walking aid by HAL-3. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 6–12. Kawamoto, H., & Sankai, Y. (2002). Comfortable power assist control method for walking aid by HAL-3. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 6–12.
Zurück zum Zitat Kawamoto, H., & Sankai, Y. (2005). Power assists method based on phase sequence and muscle force condition for HAL. Journal of Advanced Robotics, 19(7), 717–734.CrossRef Kawamoto, H., & Sankai, Y. (2005). Power assists method based on phase sequence and muscle force condition for HAL. Journal of Advanced Robotics, 19(7), 717–734.CrossRef
Zurück zum Zitat Kazerooni, H., Steger, R., & Huang, L. (2006). Hybrid control of the Berkeley lower extremity exoskeleton (bleex). The International Journal of Robotics Research, 25(5–6), 561–573.CrossRef Kazerooni, H., Steger, R., & Huang, L. (2006). Hybrid control of the Berkeley lower extremity exoskeleton (bleex). The International Journal of Robotics Research, 25(5–6), 561–573.CrossRef
Zurück zum Zitat Leslie, M. (2012). The next generation of exoskeletons. A Magazine of the IEEE Engineering in Medicine and Biology Society, 3(4), 56–61. Leslie, M. (2012). The next generation of exoskeletons. A Magazine of the IEEE Engineering in Medicine and Biology Society, 3(4), 56–61.
Zurück zum Zitat Mao, Y., & Agrawal, S. K. (2012). Design of a cable driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28(4), 922–931.CrossRef Mao, Y., & Agrawal, S. K. (2012). Design of a cable driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28(4), 922–931.CrossRef
Zurück zum Zitat Pons, J. L. (2008). Wearable robots: Bio-mechatronic exoskeletons. Hoboken, NJ, USA: Wiley.CrossRef Pons, J. L. (2008). Wearable robots: Bio-mechatronic exoskeletons. Hoboken, NJ, USA: Wiley.CrossRef
Zurück zum Zitat Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., & Sankai, Y. (2007). Intention-based walking support for paraplegia patients with robot suit HAL. Advanced Robotics, 21, 1441–1469. Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., & Sankai, Y. (2007). Intention-based walking support for paraplegia patients with robot suit HAL. Advanced Robotics, 21, 1441–1469.
Zurück zum Zitat Veneman, J. F., Kruidhof, R., Hekman, E. E., Ekkelenkamp, R., van der Van Asseldonk, E. H., & Kooij, H. (2007). Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15, 379–386.CrossRef Veneman, J. F., Kruidhof, R., Hekman, E. E., Ekkelenkamp, R., van der Van Asseldonk, E. H., & Kooij, H. (2007). Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15, 379–386.CrossRef
Zurück zum Zitat Vukobratovic, M., Hristic, D., & Stojiljkovic, Z. (1974). Development of active anthropomorphic exoskeletons. Journal of Medical and Biological Engineering and Computing, 12(1), 66–80.CrossRef Vukobratovic, M., Hristic, D., & Stojiljkovic, Z. (1974). Development of active anthropomorphic exoskeletons. Journal of Medical and Biological Engineering and Computing, 12(1), 66–80.CrossRef
Zurück zum Zitat Walsh, C.J., & Paluska, D. (2006). Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3485–3491. Walsh, C.J., & Paluska, D. (2006). Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3485–3491.
Zurück zum Zitat Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2), 128–138.CrossRef Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2), 128–138.CrossRef
Metadaten
Titel
Conceptual Design of Energy Efficient Lower Extremity Exoskeleton for Human Motion Enhancement and Medical Assistance
verfasst von
Nazim Mir-Nasiri
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-33581-0_22

Neuer Inhalt