Skip to main content

2016 | OriginalPaper | Buchkapitel

8. Conditioning Circuits for Capacitive Energy Harvesters

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents basic information about conditioning circuits used with capacitive transducers. This is a very important topic, since capacitive transducers require specific dynamic biasing which needs to be synchronized with the variation of the capacitance. Since the power of conversion with capacitive transducers is often low and since the generation uses a part of the energy generated by the transducer, design of such a circuit is not a simple task, and several different techniques exist to achieve it. In this chapter, we overview three families of conditioning circuits: continuous conditioning circuit, circuits implementing triangular and rectangular QV cycles. Their advantages and drawbacks are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The index “e” in \(T_e\) stands for “electrical.” This is to emphasize that the variation of \(C_1\) may have a different frequency that the mechanical vibrations, cf. [1].
 
2
Each point (VQ) on a QV diagram defines an unique value of the variable capacitor given by Q / V, otherwise, by the slope of the line connecting the point (VQ) and the origin.
 
3
We remind that an ideal current source generates in the external network connected to it a current of a given intensity. For that, it generates a voltage necessary to fix such a current. The value of this voltage is determined by the external circuits. For instance, if a resistance R is connected to a current source generating a current I, the source generates a voltage RI.
 
Literatur
1.
Zurück zum Zitat Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., et al. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035,001. Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., et al. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035,001.
2.
Zurück zum Zitat Bennet, A., & Kaye, R. (1787). An account of a doubler of electricity, or a machine by which the least conceivable quantity of positive or negative electricity may be continually doubled, till it becomes perceptible by common electrometers, or visible in sparks. Philosophical Transactions of the Royal Society of London, 77, 288–296. Bennet, A., & Kaye, R. (1787). An account of a doubler of electricity, or a machine by which the least conceivable quantity of positive or negative electricity may be continually doubled, till it becomes perceptible by common electrometers, or visible in sparks. Philosophical Transactions of the Royal Society of London, 77, 288–296.
3.
Zurück zum Zitat de Queiroz, A. C. M., & Domingues, M. (2011). The doubler of electricity used as battery charger. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 797–801.CrossRef de Queiroz, A. C. M., & Domingues, M. (2011). The doubler of electricity used as battery charger. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 797–801.CrossRef
4.
Zurück zum Zitat de Queiroz, A. C. M. (2010). Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 404–407). IEEE. de Queiroz, A. C. M. (2010). Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 404–407). IEEE.
5.
Zurück zum Zitat Despesse, G. (2005). Etude des phénomènes physiques utilisables pour alimenter en énergie électrique des micro-systèmes communicants. Despesse, G. (2005). Etude des phénomènes physiques utilisables pour alimenter en énergie électrique des micro-systèmes communicants.
6.
Zurück zum Zitat Despesse, G., Jager, T., Jean-Jacques, C., Léger, J. M., Vassilev, A., Basrour, S., et al. (2005). Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In Proceedings of the Design, Test, Integration and Packaging of MEMS and MOEMS (pp. 386–390). Despesse, G., Jager, T., Jean-Jacques, C., Léger, J. M., Vassilev, A., Basrour, S., et al. (2005). Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In Proceedings of the Design, Test, Integration and Packaging of MEMS and MOEMS (pp. 386–390).
7.
Zurück zum Zitat Dorzhiev, V., Karami, A., Basset, P., Marty, F., Dragunov, V., & Galayko, D. (2014). Electret-free micromachined silicon electrostatic vibration energy harvester with the bennet’s doubler as conditioning circuit. Electron Device Letters, 36(2), 183–135.CrossRef Dorzhiev, V., Karami, A., Basset, P., Marty, F., Dragunov, V., & Galayko, D. (2014). Electret-free micromachined silicon electrostatic vibration energy harvester with the bennet’s doubler as conditioning circuit. Electron Device Letters, 36(2), 183–135.CrossRef
8.
Zurück zum Zitat Dragunov, V., & Dorzhiev, V. (2013). Electrostatic vibration energy harvester with increased charging current. In Journal of Physics: Conference Series (Vol. 476, p. 012115). IOP Publishing. Dragunov, V., & Dorzhiev, V. (2013). Electrostatic vibration energy harvester with increased charging current. In Journal of Physics: Conference Series (Vol. 476, p. 012115). IOP Publishing.
9.
Zurück zum Zitat Dudka, A., Galayko, D., & Basset, P. (2012). Design of controller IC for asynchronous conditioning circuit of an electrostatic vibration energy harvester. In IEEE International Conference on Internet of Things, 2012 Workshop on energy and Wireless Sensors. Dudka, A., Galayko, D., & Basset, P. (2012). Design of controller IC for asynchronous conditioning circuit of an electrostatic vibration energy harvester. In IEEE International Conference on Internet of Things, 2012 Workshop on energy and Wireless Sensors.
10.
Zurück zum Zitat Dudka, A., Galayko, D., Blokhina, E., & Basset, P. (2014). Smart integrated conditioning electronics for electrostatic vibration energy harvesters. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2600–2603). IEEE. Dudka, A., Galayko, D., Blokhina, E., & Basset, P. (2014). Smart integrated conditioning electronics for electrostatic vibration energy harvesters. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2600–2603). IEEE.
11.
Zurück zum Zitat Florentino, H. R., Freire, R. C. S., Sá, A. V. S., Florentino, C., & Galayko, D. (2011). Electrostatic vibration energy harvester with piezoelectric start-up generator. In 2011 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1343–1346). IEEE. Florentino, H. R., Freire, R. C. S., Sá, A. V. S., Florentino, C., & Galayko, D. (2011). Electrostatic vibration energy harvester with piezoelectric start-up generator. In 2011 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1343–1346). IEEE.
12.
Zurück zum Zitat Galayko, D., Blokhina, E., Basset, P., Cottone, F., Dudka, A., O’Riordan, E., et al. (2013). Tools for analytical and numerical analysis of electrostatic vibration energy harvesters: Application to a continuous mode conditioning circuit. In Journal of Physics: Conference Series (Vol. 476, p. 012076). Galayko, D., Blokhina, E., Basset, P., Cottone, F., Dudka, A., O’Riordan, E., et al. (2013). Tools for analytical and numerical analysis of electrostatic vibration energy harvesters: Application to a continuous mode conditioning circuit. In Journal of Physics: Conference Series (Vol. 476, p. 012076).
13.
Zurück zum Zitat Galayko, D., Dudka, A., Karami, A., O’Riordan, E., Blokhina, E., Feely, O., et al. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 1: Analysis of the electrical domain. IEEE Transactions on Circuits and System I, 62(11), 2652–2663. Galayko, D., Dudka, A., Karami, A., O’Riordan, E., Blokhina, E., Feely, O., et al. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 1: Analysis of the electrical domain. IEEE Transactions on Circuits and System I, 62(11), 2652–2663.
14.
Zurück zum Zitat Kempitiya, A., Borca-Tasciuc, D. A., & Hella, M. M. (2013). Low-power interface IC for tri-plate electrostatic energy converters. IEEE Transactions on Power Electronics, 28(2), 609–614. doi:10.1109/TPEL.2012.2213676.CrossRef Kempitiya, A., Borca-Tasciuc, D. A., & Hella, M. M. (2013). Low-power interface IC for tri-plate electrostatic energy converters. IEEE Transactions on Power Electronics, 28(2), 609–614. doi:10.​1109/​TPEL.​2012.​2213676.CrossRef
15.
Zurück zum Zitat Lefeuvre, E., Wei, J., Mathias, H., & Costa, F. (2015). Single-switch inductorless power management circuit for electrostatic vibration energy harvesters. In Proceeding of IEEE NEWCAS 2015 Conference. Lefeuvre, E., Wei, J., Mathias, H., & Costa, F. (2015). Single-switch inductorless power management circuit for electrostatic vibration energy harvesters. In Proceeding of IEEE NEWCAS 2015 Conference.
16.
Zurück zum Zitat Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76 (2001). Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76 (2001).
17.
Zurück zum Zitat Mitcheson, P. D., Sterken, T., He, C., Kiziroglou, M., Yeatman, E., & Puers, R. (2008). Electrostatic microgenerators. Measurement and Control, 41(4), 114–119.CrossRef Mitcheson, P. D., Sterken, T., He, C., Kiziroglou, M., Yeatman, E., & Puers, R. (2008). Electrostatic microgenerators. Measurement and Control, 41(4), 114–119.CrossRef
18.
Zurück zum Zitat Mur-Miranda, J. (2004). Electrostatic Vibration-to-Electric Energy Conversion. Ph.D. thesis. MIT. Mur-Miranda, J. (2004). Electrostatic Vibration-to-Electric Energy Conversion. Ph.D. thesis. MIT.
19.
Zurück zum Zitat Nayfeh, A. (1993). Introduction to perturbation techniques. Wiley. Nayfeh, A. (1993). Introduction to perturbation techniques. Wiley.
20.
Zurück zum Zitat Okamoto, H., Suzuki, T., Mori, K., & Kuwano, H. (2009). A concept of an electret power generator integrated with a rectifier. Washington DC: PowerMEMS. Okamoto, H., Suzuki, T., Mori, K., & Kuwano, H. (2009). A concept of an electret power generator integrated with a rectifier. Washington DC: PowerMEMS.
21.
Zurück zum Zitat Risquez, S., Wei, J., Woytasik, M., Parrain, F., & Lefeuvre, E. (2014). Self-biased inductor-less interface circuit for electret-free electrostatic energy harvesters. In Journal of Physics: Conference Series (Vol. 557, pp. 12,052–12,056). IOP Publishing. Risquez, S., Wei, J., Woytasik, M., Parrain, F., & Lefeuvre, E. (2014). Self-biased inductor-less interface circuit for electret-free electrostatic energy harvesters. In Journal of Physics: Conference Series (Vol. 557, pp. 12,052–12,056). IOP Publishing.
22.
Zurück zum Zitat Roundy, S., Wright, P., & Pister, K. (2002). Micro-electrostatic vibration-to-electricity converters. In Proceedings of 2002 ASME International Mechanical Engineering Congress. Roundy, S., Wright, P., & Pister, K. (2002). Micro-electrostatic vibration-to-electricity converters. In Proceedings of 2002 ASME International Mechanical Engineering Congress.
23.
Zurück zum Zitat Senturia, S. D. (2001). Microsystem design (Vol. 3). Boston: Kluwer Academic Publishers. Senturia, S. D. (2001). Microsystem design (Vol. 3). Boston: Kluwer Academic Publishers.
24.
Zurück zum Zitat Sterken, T., Fiorini, P., Baert, K., Puers, R., & Borghs, G. (2003). An electret-based electrostatic/spl mu/-generator. In 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems (Vol. 2, pp. 1291–1294). IEEE. Sterken, T., Fiorini, P., Baert, K., Puers, R., & Borghs, G. (2003). An electret-based electrostatic/spl mu/-generator. In 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems (Vol. 2, pp. 1291–1294). IEEE.
25.
Zurück zum Zitat Torres, E. O., & Rincon-Mora, G. A. (2009). Electrostatic energy-harvesting and battery-charging CMOS system prototype. IEEE Transactions on Circuits and Systems, I(56), 1938–1948.MathSciNetCrossRef Torres, E. O., & Rincon-Mora, G. A. (2009). Electrostatic energy-harvesting and battery-charging CMOS system prototype. IEEE Transactions on Circuits and Systems, I(56), 1938–1948.MathSciNetCrossRef
26.
Zurück zum Zitat Yen, B. C., & Lang, J. H. (2006). A variable-capacitance vibration-to-electric energy harvester. IEEE Transaction on Circuits and Systems-I: Regular papers IEEE, 53(2), 288–295.CrossRef Yen, B. C., & Lang, J. H. (2006). A variable-capacitance vibration-to-electric energy harvester. IEEE Transaction on Circuits and Systems-I: Regular papers IEEE, 53(2), 288–295.CrossRef
Metadaten
Titel
Conditioning Circuits for Capacitive Energy Harvesters
verfasst von
D. Galayko
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20355-3_8