Skip to main content
Erschienen in: Distributed Computing 5/2020

03.12.2019

Confidential gossip

verfasst von: Chryssis Georgiou, Seth Gilbert, Dariusz R. Kowalski

Erschienen in: Distributed Computing | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Epidemic gossip has proven a reliable and efficient technique for sharing information in a distributed network. Much of this reliability and efficiency derives from processes collaborating, sharing the work of distributing information. As a result of this collaboration, processes may receive information that was not originally intended for them. For example, some process may act as an intermediary, aggregating and forwarding messages from some set of sources to some set of destinations. But what if rumors are confidential? In that case, only processes that were originally intended to receive the rumor should be allowed to learn the rumor. This blatantly contradicts the basic premise of epidemic gossip, which assumes that processes can collaborate. In fact, if only processes in a rumor’s “destination set” participate in gossiping that rumor, we show that high message complexity is unavoidable. A natural approach is to rely on cryptography, for example, assuming that each process has a well-known public-key that can be used to encrypt the rumor. In a dynamic system, with changing sets of destinations, such a process seems potentially expensive. In this paper, we propose a scheme in which each rumor is broken into multiple fragments using a very simple coding scheme; any given fragment provides no information about the rumor, while together, the fragments can be reassembled into the original rumor. The processes collaborate in disseminating the rumor fragments in such a way that no process outside of a rumor’s destination set ever receives all the fragments of a rumor, while every process in the destination set eventually learns all the fragments. Notably, our solution operates in an environment where rumors are dynamically and continuously injected into the system and processes are subject to crashes and restarts. In addition, the presented scheme can tolerate a moderate amount of collusions among curious processes without a substantial increase in cost; curious processes are non-malicious processes that are not in a rumor’s destination set, and still want to learn the rumor (that is, collect all fragments of the rumor).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Notice that this does not allow other algebraic manipulation of the rumor, as in “network coding” techniques.
 
Literatur
1.
Zurück zum Zitat Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: DSN 233–242 (2004) Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: DSN 233–242 (2004)
2.
Zurück zum Zitat Ballardie, A.J.: A New Approach to Multicast Communication in a Datagram Network. Ph.D. Thesis, University College London (1995) Ballardie, A.J.: A New Approach to Multicast Communication in a Datagram Network. Ph.D. Thesis, University College London (1995)
3.
Zurück zum Zitat Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis. In: CRYPTO, pp. 451–468 (2008) Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis. In: CRYPTO, pp. 451–468 (2008)
4.
Zurück zum Zitat Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: ASIACRYPT, pp. 236–252 (2005) Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: ASIACRYPT, pp. 236–252 (2005)
5.
Zurück zum Zitat Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a taxonomy and some efficient constructions. In: INFOCOM, pp. 708–716 (1999) Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a taxonomy and some efficient constructions. In: INFOCOM, pp. 708–716 (1999)
6.
Zurück zum Zitat Chlebus, B.S., Kowalski, D.R.: Time and communication efficient consensus for crash failures. In: DISC, pp. 314–328 (2006) Chlebus, B.S., Kowalski, D.R.: Time and communication efficient consensus for crash failures. In: DISC, pp. 314–328 (2006)
7.
Zurück zum Zitat Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: SpiderCast: a scalable interest-aware overlay for topic-based pub/sub communication. In: DEBS, pp. 14–25 (2007) Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: SpiderCast: a scalable interest-aware overlay for topic-based pub/sub communication. In: DEBS, pp. 14–25 (2007)
8.
Zurück zum Zitat Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub/sub with many topics. In: PODC, pp. 109–118 (2007) Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub/sub with many topics. In: PODC, pp. 109–118 (2007)
9.
Zurück zum Zitat Delposte-Gallet, G., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds: privacy in population protocols. In: OPODIS, pp. 329–342 (2007) Delposte-Gallet, G., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds: privacy in population protocols. In: OPODIS, pp. 329–342 (2007)
10.
Zurück zum Zitat Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders, push vs pull, and robustness. In: ICALP, pp. 366–377 (2009) Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders, push vs pull, and robustness. In: ICALP, pp. 366–377 (2009)
11.
Zurück zum Zitat Fernandess, Y., Malkhi, D.: On spreading recommendations via social gossip. In: SPAA, pp. 91–97 (2008) Fernandess, Y., Malkhi, D.: On spreading recommendations via social gossip. In: SPAA, pp. 91–97 (2008)
12.
Zurück zum Zitat Fiat, A., Naor, M.: Broadcast encryption. In: CRYPTO, pp. 480–491 (1993) Fiat, A., Naor, M.: Broadcast encryption. In: CRYPTO, pp. 480–491 (1993)
13.
Zurück zum Zitat Georgiou, Ch., Gilbert, S., Kowalski, D.R.: Meeting the deadline: on the complexity of fault-tolerant continuous gossip. Distrib. Comput. 24(5), 223–244 (2011). (A preliminary version appears in PODC 2010, pp. 247–256) Georgiou, Ch., Gilbert, S., Kowalski, D.R.: Meeting the deadline: on the complexity of fault-tolerant continuous gossip. Distrib. Comput. 24(5), 223–244 (2011). (A preliminary version appears in PODC 2010, pp. 247–256)
14.
Zurück zum Zitat Georgiou, Ch., Gilbert, S., Guerraoui, R., Kowalski, D.R.: Asynchronous gossip. J. ACM 60(2), article 11 (2013) Georgiou, Ch., Gilbert, S., Guerraoui, R., Kowalski, D.R.: Asynchronous gossip. J. ACM 60(2), article 11 (2013)
15.
Zurück zum Zitat Goldreich, O.: Foundations of Cryptography: Volume II (Basic Applications). Cambridge University Press, Cambridge (2004)CrossRef Goldreich, O.: Foundations of Cryptography: Volume II (Basic Applications). Cambridge University Press, Cambridge (2004)CrossRef
16.
Zurück zum Zitat Gupta, I., Kermarrec, A.M., Ganesh, A.J.: Efficient epidemic-style protocols for reliable and scalable multicast. In: SRDS, pp. 180–189 (2002) Gupta, I., Kermarrec, A.M., Ganesh, A.J.: Efficient epidemic-style protocols for reliable and scalable multicast. In: SRDS, pp. 180–189 (2002)
17.
Zurück zum Zitat Hromkovic, J., Klasing, R., Pelc, A., Ruzika, P., Unger, W.: Dissemination of Information in Communication Networks: Broadcasting, Gossiping, Leader Election, and Fault-Tolerance. Springer, Berlin (2005)MATH Hromkovic, J., Klasing, R., Pelc, A., Ruzika, P., Unger, W.: Dissemination of Information in Communication Networks: Broadcasting, Gossiping, Leader Election, and Fault-Tolerance. Springer, Berlin (2005)MATH
18.
Zurück zum Zitat Johansen, H.D., Allavena, A., van Renesse, R.: Fireflies: scalable support for intrusion-tolerant network overlays. In: EuroSys, pp. 3–13 (2006) Johansen, H.D., Allavena, A., van Renesse, R.: Fireflies: scalable support for intrusion-tolerant network overlays. In: EuroSys, pp. 3–13 (2006)
19.
Zurück zum Zitat Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: FOCS, pp. 565–574 (2000) Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: FOCS, pp. 565–574 (2000)
20.
Zurück zum Zitat Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location protocols. J. ACM 51, 943–967 (2004)MathSciNetCrossRef Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location protocols. J. ACM 51, 943–967 (2004)MathSciNetCrossRef
21.
Zurück zum Zitat Kermarrec, A., Massoulie, L., Ganesh, A.: Probabilistic reliable dissemination in large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14(3), 248–258 (2003)CrossRef Kermarrec, A., Massoulie, L., Ganesh, A.: Probabilistic reliable dissemination in large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14(3), 248–258 (2003)CrossRef
22.
Zurück zum Zitat Kissner, L., Song, D.: Privacy-preserving set operations. In: CRYPTO, pp. 241–257 (2005) Kissner, L., Song, D.: Privacy-preserving set operations. In: CRYPTO, pp. 241–257 (2005)
23.
Zurück zum Zitat Kowalski, D.R., Strojnowski, M.: On the communication surplus incurred by faulty processors. In: DISC, pp. 328–342 (2007) Kowalski, D.R., Strojnowski, M.: On the communication surplus incurred by faulty processors. In: DISC, pp. 328–342 (2007)
25.
Zurück zum Zitat Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propagating updates in a Byzantine environment. Theor. Comput. Sci. 299, 289–306 (2003)MathSciNetCrossRef Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propagating updates in a Byzantine environment. Theor. Comput. Sci. 299, 289–306 (2003)MathSciNetCrossRef
26.
Zurück zum Zitat Micciancio, D., Panjwani, S.: Corrupting one vs. corrupting many: the case of broadcast and multicast encryption. In: ICALP, pp. 70–82 (2006) Micciancio, D., Panjwani, S.: Corrupting one vs. corrupting many: the case of broadcast and multicast encryption. In: ICALP, pp. 70–82 (2006)
27.
Zurück zum Zitat Minsky, Y.M., Schneider, F.B.: Tolerating malicious gossip. Distrib. Comput. 16, 49–68 (2003)CrossRef Minsky, Y.M., Schneider, F.B.: Tolerating malicious gossip. Distrib. Comput. 16, 49–68 (2003)CrossRef
28.
Zurück zum Zitat Mittra, S.: Iolus: a framework for scalable secure multicasting. SIGCOMM Comput. Commun. Rev. 27(4), 277–288 (1997)CrossRef Mittra, S.: Iolus: a framework for scalable secure multicasting. SIGCOMM Comput. Commun. Rev. 27(4), 277–288 (1997)CrossRef
30.
Zurück zum Zitat Onus, M., Richa, A.W.: Minimum maximum degree pub/sub overlay network design. In: INFOCOM, pp. 882–890 (2009) Onus, M., Richa, A.W.: Minimum maximum degree pub/sub overlay network design. In: INFOCOM, pp. 882–890 (2009)
31.
Zurück zum Zitat Pang, J., Zhang, C.: How to work with honest but curious judges? In: Proceedings of 7th international workshop on security issues in concurrency, pp. 31–45 (2009) Pang, J., Zhang, C.: How to work with honest but curious judges? In: Proceedings of 7th international workshop on security issues in concurrency, pp. 31–45 (2009)
32.
Zurück zum Zitat Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In: TCC, pp. 21–40 (2007) Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In: TCC, pp. 21–40 (2007)
33.
35.
Zurück zum Zitat Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using one-way function trees. IEEE Trans. Softw. Eng. 29(5), 444–458 (2003)CrossRef Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using one-way function trees. IEEE Trans. Softw. Eng. 29(5), 444–458 (2003)CrossRef
36.
Zurück zum Zitat Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. CRC Press, Cambridge (2005)MATH Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. CRC Press, Cambridge (2005)MATH
37.
Zurück zum Zitat Wong, C.K., Gouda, M., Lam, S.: Secure group communications using key graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)CrossRef Wong, C.K., Gouda, M., Lam, S.: Secure group communications using key graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)CrossRef
38.
Zurück zum Zitat Xu, G., Amariucai, G., Guan, Y.: Delegation of computation with verification outsourcing: curious verifiers. In: PODC, pp. 393–402 (2013) Xu, G., Amariucai, G., Guan, Y.: Delegation of computation with verification outsourcing: curious verifiers. In: PODC, pp. 393–402 (2013)
39.
Zurück zum Zitat Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982) Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)
Metadaten
Titel
Confidential gossip
verfasst von
Chryssis Georgiou
Seth Gilbert
Dariusz R. Kowalski
Publikationsdatum
03.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Distributed Computing / Ausgabe 5/2020
Print ISSN: 0178-2770
Elektronische ISSN: 1432-0452
DOI
https://doi.org/10.1007/s00446-019-00367-x