Skip to main content

2018 | OriginalPaper | Buchkapitel

Conformational Motions of Disordered Proteins

verfasst von : Andreas M. Stadler

Erschienen in: Biological, Physical and Technical Basics of Cell Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics in proteins animate and play a vital role for biologically relevant processes of these biomacromolecules. Quasielastic incoherent neutron scattering (QENS) is a well-suited experimental method to study protein dynamics from the picosecond to several nanoseconds and in the Ångström length-scale. In QENS experiments of protein solutions hydrogens act as reporters for the motions of methyl groups or amino acids to which they are bound. Neutron Spin-Echo spectroscopy (NSE) on the other hand offers the highest energy resolution in the field of neutron spectroscopy. It enables the study of slow collective motions in proteins up to several hundred nanoseconds and in the nanometre length-scale. In the following chapter I will present recent experimental studies that demonstrate the relevance of molecular dynamics for protein folding and for conformational transitions of intrinsically disordered proteins (IDPs). During the folding collapse the protein chain is exploring the accessible conformational space via molecular motions. A large flexibility of partially folded and unfolded proteins, therefore, is mandatory for rapid protein folding. IDPs on the other hand are a special case as they are largely unstructured under physiological conditions in their native states. A large flexibility of IDPs is a characteristic property of the proteins as it allows, for example, the interaction with various binding partners or the rapid response to different conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Bernadó, P., Mylonas, E., Petoukhov, M. V., et al. (2007). Structural characterization of flexible proteins using small-angle X-ray scattering. Journal of the American Chemical Society, 129, 5656–5664.CrossRef Bernadó, P., Mylonas, E., Petoukhov, M. V., et al. (2007). Structural characterization of flexible proteins using small-angle X-ray scattering. Journal of the American Chemical Society, 129, 5656–5664.CrossRef
5.
Zurück zum Zitat Cordeiro, T. N., Herranz-Trillo, F., Urbanek, A., et al. (2017). Small-angle scattering studies of intrinsically disordered proteins and their complexes. Current Opinion in Structural Biology, 42, 15–23.CrossRef Cordeiro, T. N., Herranz-Trillo, F., Urbanek, A., et al. (2017). Small-angle scattering studies of intrinsically disordered proteins and their complexes. Current Opinion in Structural Biology, 42, 15–23.CrossRef
8.
Zurück zum Zitat Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.CrossRef Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.CrossRef
11.
Zurück zum Zitat Fitter, J., Gutberlet, T., & Katsaras, J. (Eds.). (2006). Neutron scattering in biology—Techniques and applications. Berlin: Springer. Fitter, J., Gutberlet, T., & Katsaras, J. (Eds.). (2006). Neutron scattering in biology—Techniques and applications. Berlin: Springer.
14.
Zurück zum Zitat Grimaldo, M., Roosen-Runge, F., Hennig, M., et al. (2015). Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Physical Chemistry Chemical Physics, 17, 4645–4655. https://doi.org/10.1039/c4cp04944f.CrossRef Grimaldo, M., Roosen-Runge, F., Hennig, M., et al. (2015). Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Physical Chemistry Chemical Physics, 17, 4645–4655. https://​doi.​org/​10.​1039/​c4cp04944f.CrossRef
17.
Zurück zum Zitat Harauz, G., Ishiyama, N., Hill, C. M., et al. (2004). Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron, 35, 503–542.CrossRef Harauz, G., Ishiyama, N., Hill, C. M., et al. (2004). Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron, 35, 503–542.CrossRef
21.
Zurück zum Zitat Monkenbusch, M., Stadler, A., Biehl, R., et al. (2015). Fast internal dynamics in alcohol dehydrogenase. The Journal of Chemical Physics, 143, 75101.CrossRef Monkenbusch, M., Stadler, A., Biehl, R., et al. (2015). Fast internal dynamics in alcohol dehydrogenase. The Journal of Chemical Physics, 143, 75101.CrossRef
22.
Zurück zum Zitat Receveur, V., Calmettes, P., Smith, J. C., et al. (1997). Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins, 28, 380–387.CrossRef Receveur, V., Calmettes, P., Smith, J. C., et al. (1997). Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins, 28, 380–387.CrossRef
23.
Zurück zum Zitat Richter, D., Monkenbusch, M., Arbe, A., & Colmenero, J. (2005). Neutron spin echo in polymer systems. Berlin: Springer.CrossRef Richter, D., Monkenbusch, M., Arbe, A., & Colmenero, J. (2005). Neutron spin echo in polymer systems. Berlin: Springer.CrossRef
26.
Zurück zum Zitat Stadler, A. M., Pellegrini, E., Johnson, M., et al. (2012). Dynamics-stability relationships in Apo- and Holomyoglobin: A combined neutron scattering and molecular dynamics simulations study. Biophysical Journal, 102, 351–359.CrossRef Stadler, A. M., Pellegrini, E., Johnson, M., et al. (2012). Dynamics-stability relationships in Apo- and Holomyoglobin: A combined neutron scattering and molecular dynamics simulations study. Biophysical Journal, 102, 351–359.CrossRef
27.
Zurück zum Zitat Stadler, A. M., Schweins, R., Zaccai, G., & Lindner, P. (2010). Observation of a large-scale superstructure in concentrated hemoglobin solutions by using small angle neutron scattering. The Journal of Physical Chemistry Letters, 1, 1805–1808. https://doi.org/10.1021/jz100576c.CrossRef Stadler, A. M., Schweins, R., Zaccai, G., & Lindner, P. (2010). Observation of a large-scale superstructure in concentrated hemoglobin solutions by using small angle neutron scattering. The Journal of Physical Chemistry Letters, 1, 1805–1808. https://​doi.​org/​10.​1021/​jz100576c.CrossRef
30.
Zurück zum Zitat Tompa, P. (2012). Intrinsically disordered proteins: A 10-year recap. Trends in Biochemical Sciences, 37, 1–8.CrossRef Tompa, P. (2012). Intrinsically disordered proteins: A 10-year recap. Trends in Biochemical Sciences, 37, 1–8.CrossRef
31.
Zurück zum Zitat Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11, 739–756.CrossRef Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11, 739–756.CrossRef
32.
Zurück zum Zitat Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41, 415–427.CrossRef Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41, 415–427.CrossRef
Metadaten
Titel
Conformational Motions of Disordered Proteins
verfasst von
Andreas M. Stadler
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7904-7_17

Neuer Inhalt