Skip to main content
Erschienen in: Foundations of Computational Mathematics 5/2015

01.10.2015

Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order

verfasst von: Takashi Goda, Josef Dick

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Higher order scrambled digital nets are randomized quasi-Monte Carlo rules which have recently been introduced by Dick (Ann Stat 39:1372–1398, 2011) and shown to achieve the optimal rate of convergence of the root mean square error for numerical integration of smooth functions defined on the \(s\)-dimensional unit cube. The key ingredient there is a digit interlacing function applied to the components of a randomly scrambled digital net whose number of components is \(ds\), where the integer \(d\) is the so-called interlacing factor. In this paper we replace the randomly scrambled digital nets by randomly scrambled polynomial lattice point sets, which allows us to obtain a better dependence on the dimension while still achieving the optimal rate of convergence. Our results apply to Owen’s full scrambling scheme as well as the simplifications studied by Hickernell, Matoušek and Owen. We consider weighted function spaces with general weights, whose elements have square integrable partial mixed derivatives of order up to \(\alpha \ge 1\), and derive an upper bound on the variance of the estimator for higher order scrambled polynomial lattice rules. Employing our obtained bound as a quality criterion, we prove that the component-by-component construction can be used to obtain explicit constructions of good polynomial lattice point sets. By first constructing classical polynomial lattice point sets in base \(b\) and dimension \(ds\), to which we then apply the interlacing scheme of order \(d\), we obtain a construction cost of the algorithm of order \(\mathcal {O}(dsmb^m)\) operations using \(\mathcal {O}(b^m)\) memory in case of product weights, where \(b^m\) is the number of points in the polynomial lattice point set.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Baldeaux, Higher order nets and sequences, Ph.D. thesis, The University of New South Wales, 2010. J. Baldeaux, Higher order nets and sequences, Ph.D. thesis, The University of New South Wales, 2010.
2.
Zurück zum Zitat J. Baldeaux and J. Dick, A construction of polynomial lattice rules with small gain coefficients. Numer. Math. 119 (2011), 271–297. J. Baldeaux and J. Dick, A construction of polynomial lattice rules with small gain coefficients. Numer. Math. 119 (2011), 271–297.
3.
Zurück zum Zitat J. Baldeaux, J. Dick, J. Greslehner and F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules. J. Complexity 27 (2011), 281–299. J. Baldeaux, J. Dick, J. Greslehner and F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules. J. Complexity 27 (2011), 281–299.
4.
Zurück zum Zitat J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens and F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59 (2012) 403–431. J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens and F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59 (2012) 403–431.
5.
Zurück zum Zitat H. E. Chrestenson, A class of generalized Walsh functions. Pacific J. Math. 5 (1955) 17–31. H. E. Chrestenson, A class of generalized Walsh functions. Pacific J. Math. 5 (1955) 17–31.
6.
Zurück zum Zitat J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45 (2007) 2141–2176. J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45 (2007) 2141–2176.
7.
Zurück zum Zitat J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46 (2008) 1519–1553. J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46 (2008) 1519–1553.
8.
Zurück zum Zitat J. Dick, On quasi-Monte Carlo rules achieving higher order convergence, Springer, Berlin, 2009, pp. 73–96. J. Dick, On quasi-Monte Carlo rules achieving higher order convergence, Springer, Berlin, 2009, pp. 73–96.
9.
Zurück zum Zitat J. Dick, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Statist. 39 (2011) 1372–1398. J. Dick, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Statist. 39 (2011) 1372–1398.
10.
Zurück zum Zitat J. Dick and M. Gnewuch, Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. J. Approx. Theory 184 (2014) 111–145. J. Dick and M. Gnewuch, Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. J. Approx. Theory 184 (2014) 111–145.
11.
Zurück zum Zitat J. Dick, F.Y. Kuo, F. Pillichshammer and I.H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comp. 74 (2005) 1895–1921. J. Dick, F.Y. Kuo, F. Pillichshammer and I.H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comp. 74 (2005) 1895–1921.
12.
Zurück zum Zitat J. Dick, G. Leobacher, and F. Pillichshammer, Construction algorithms for digital nets with low weighted star discrepancy. SIAM. J. Numer. Anal. 43 (2005) 76–95. J. Dick, G. Leobacher, and F. Pillichshammer, Construction algorithms for digital nets with low weighted star discrepancy. SIAM. J. Numer. Anal. 43 (2005) 76–95.
13.
Zurück zum Zitat J. Dick and F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules. J. Complexity 23 (2007) 436–453. J. Dick and F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules. J. Complexity 23 (2007) 436–453.
14.
Zurück zum Zitat J. Dick and F. Pillichshammer, Digital nets and sequences: discrepancy theory and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, 2010. J. Dick and F. Pillichshammer, Digital nets and sequences: discrepancy theory and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, 2010.
15.
Zurück zum Zitat J. Dick, I. H. Sloan, X. Wang and H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103 (2006) 63–97. J. Dick, I. H. Sloan, X. Wang and H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103 (2006) 63–97.
16.
Zurück zum Zitat H. Faure, Discrépances de suites associées à un système de numération (en dimension s). Acta Arith. 41 (1982) 337–351. H. Faure, Discrépances de suites associées à un système de numération (en dimension s). Acta Arith. 41 (1982) 337–351.
17.
Zurück zum Zitat F. J. Hickernell, The mean square discrepancy of randomized nets. ACM Trans. Modeling Comput. Simul. 6 (1996) 274–296. F. J. Hickernell, The mean square discrepancy of randomized nets. ACM Trans. Modeling Comput. Simul. 6 (1996) 274–296.
18.
Zurück zum Zitat N. M. Korobov, The approximate computation of multiple integrals/approximate evaluation of repeated integrals. Dokl. Akad. Nauk SSSR 124 (1959) 1207–1210. N. M. Korobov, The approximate computation of multiple integrals/approximate evaluation of repeated integrals. Dokl. Akad. Nauk SSSR 124 (1959) 1207–1210.
19.
Zurück zum Zitat P. Kritzer and F. Pillichshammer, Constructions of general polynomial lattices for multivariate integration. Bull. Austral. Math. Soc. 76 (2007) 93–110. P. Kritzer and F. Pillichshammer, Constructions of general polynomial lattices for multivariate integration. Bull. Austral. Math. Soc. 76 (2007) 93–110.
20.
Zurück zum Zitat L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1974. L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1974.
21.
Zurück zum Zitat G. Larcher, A. Lauss, H. Niederreiter and W. Ch. Schmid, Optimal polynomials for \((t, m, s)\)-nets and numerical integration of multivariate Walsh series. SIAM. J. Numer. Anal. 33 (1996) 2239–2253. G. Larcher, A. Lauss, H. Niederreiter and W. Ch. Schmid, Optimal polynomials for \((t, m, s)\)-nets and numerical integration of multivariate Walsh series. SIAM. J. Numer. Anal. 33 (1996) 2239–2253.
22.
Zurück zum Zitat C. Lemieux and P. L’Ecuyer, Randomized polynomial lattice rules for multivariate integration and simulation. SIAM. J. Sci. Comput. 24 (2003) 1768–1789. C. Lemieux and P. L’Ecuyer, Randomized polynomial lattice rules for multivariate integration and simulation. SIAM. J. Sci. Comput. 24 (2003) 1768–1789.
23.
Zurück zum Zitat J. Matoušek, On the \(L_2\) discrepancy for anchored boxes. J. Complexity 14 (1998) 527–556. J. Matoušek, On the \(L_2\) discrepancy for anchored boxes. J. Complexity 14 (1998) 527–556.
24.
Zurück zum Zitat T. Müller-Gronbach, E. Novak and K. Ritter, Monte Carlo-Algorithmen. (German) Springer-Lehrbuch. Springer, Heidelberg, 2012. T. Müller-Gronbach, E. Novak and K. Ritter, Monte Carlo-Algorithmen. (German) Springer-Lehrbuch. Springer, Heidelberg, 2012.
25.
Zurück zum Zitat H. Niederreiter, Low-discrepancy and low-dispersion sequences. J. Number Theory 30 (1988) 51–70. H. Niederreiter, Low-discrepancy and low-dispersion sequences. J. Number Theory 30 (1988) 51–70.
26.
Zurück zum Zitat H. Niederreiter, Random number generation and quasi-Monte Carlo methods. in: CBMS-NSF Series in Applied Mathematics, vol. 63, SIAM, Philadelphia, 1992. H. Niederreiter, Random number generation and quasi-Monte Carlo methods. in: CBMS-NSF Series in Applied Mathematics, vol. 63, SIAM, Philadelphia, 1992.
27.
Zurück zum Zitat H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42 (1992) 143–166. H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42 (1992) 143–166.
28.
Zurück zum Zitat H. Niederreiter and C. P. Xing, Rational points on curves over finite fields: theory and applications. London Mathematical Society Lecture Note Series, 285. Cambridge University Press, Cambridge, 2001. H. Niederreiter and C. P. Xing, Rational points on curves over finite fields: theory and applications. London Mathematical Society Lecture Note Series, 285. Cambridge University Press, Cambridge, 2001.
29.
Zurück zum Zitat E. Novak, Deterministic and stochastic error bounds in numerical analysis. Lecture Notes in Mathematics, 1349. Springer-Verlag, Berlin, 1988. E. Novak, Deterministic and stochastic error bounds in numerical analysis. Lecture Notes in Mathematics, 1349. Springer-Verlag, Berlin, 1988.
30.
Zurück zum Zitat E. Novak and H. Woźniakowski, Tractability of multivariate problems. Vol. 1: Linear information. EMS Tracts in Mathematics, 6. European Mathematical Society (EMS), Zürich, 2008. E. Novak and H. Woźniakowski, Tractability of multivariate problems. Vol. 1: Linear information. EMS Tracts in Mathematics, 6. European Mathematical Society (EMS), Zürich, 2008.
31.
Zurück zum Zitat E. Novak and H. Woźniakowski, Tractability of multivariate problems. Volume II: Standard information for functionals. EMS Tracts in Mathematics, 12. European Mathematical Society (EMS), Zürich, 2010. E. Novak and H. Woźniakowski, Tractability of multivariate problems. Volume II: Standard information for functionals. EMS Tracts in Mathematics, 12. European Mathematical Society (EMS), Zürich, 2010.
32.
Zurück zum Zitat D. Nuyens and R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75 (2006) 903–920. D. Nuyens and R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75 (2006) 903–920.
33.
Zurück zum Zitat D. Nuyens and R. Cools, Fast component-by-component construction, a reprise for different kernels. Springer, Berlin, 2006, pp. 373–387. D. Nuyens and R. Cools, Fast component-by-component construction, a reprise for different kernels. Springer, Berlin, 2006, pp. 373–387.
34.
Zurück zum Zitat A. B. Owen, Randomly permuted \((t, m, s)\)-nets and \((t, s)\)-sequences. in Monte Carlo and quasi-Monte Carlo Methods in Scientific Computing, Springer, New York, 1995, pp. 299–317. A. B. Owen, Randomly permuted \((t, m, s)\)-nets and \((t, s)\)-sequences. in Monte Carlo and quasi-Monte Carlo Methods in Scientific Computing, Springer, New York, 1995, pp. 299–317.
35.
Zurück zum Zitat A. B. Owen, Monte Carlo variance of scrambled net quadrature. SIAM. J. Numer. Anal. 34 (1997) 1884–1910. A. B. Owen, Monte Carlo variance of scrambled net quadrature. SIAM. J. Numer. Anal. 34 (1997) 1884–1910.
36.
Zurück zum Zitat A. B. Owen, Scrambled net variance for integrals of smooth functions. Ann. Statist. 25 (1997) 1541–1562. A. B. Owen, Scrambled net variance for integrals of smooth functions. Ann. Statist. 25 (1997) 1541–1562.
37.
Zurück zum Zitat A. B. Owen, Variance with alternative scramblings of digital nets. ACM Trans. Model. Comp. Simul. 13 (2003) 363–378. A. B. Owen, Variance with alternative scramblings of digital nets. ACM Trans. Model. Comp. Simul. 13 (2003) 363–378.
38.
Zurück zum Zitat I. H. Sloan and A. V. Reztsov, Component-by-component construction of good lattice rules. Math. Comp. 71 (2002) 263–273. I. H. Sloan and A. V. Reztsov, Component-by-component construction of good lattice rules. Math. Comp. 71 (2002) 263–273.
39.
Zurück zum Zitat I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14 (1998) 1–33. I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14 (1998) 1–33.
40.
Zurück zum Zitat I. M. Sobol’, The distribution of points in a cube and approximate evaluation of integrals. Zh. Vycisl. Mat. i Mat. Fiz. 7 (1967) 784–802. I. M. Sobol’, The distribution of points in a cube and approximate evaluation of integrals. Zh. Vycisl. Mat. i Mat. Fiz. 7 (1967) 784–802.
41.
Zurück zum Zitat J. L. Walsh, A closed set of normal orthogonal functions. Amer. J. Math. 45 (1923) 5–24. J. L. Walsh, A closed set of normal orthogonal functions. Amer. J. Math. 45 (1923) 5–24.
Metadaten
Titel
Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order
verfasst von
Takashi Goda
Josef Dick
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2015
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-014-9226-8

Weitere Artikel der Ausgabe 5/2015

Foundations of Computational Mathematics 5/2015 Zur Ausgabe

Premium Partner