Skip to main content
Erschienen in: Tribology Letters 4/2020

01.12.2020 | Original Paper

Cooperativity Between Zirconium Dioxide Nanoparticles and Extreme Pressure Additives in Forming Protective Tribofilms: Toward Enabling Low Viscosity Lubricants

verfasst von: Meagan B. Elinski, Parker LaMascus, Lei Zheng, Andrew Jackson, Robert J. Wiacek, Robert W. Carpick

Erschienen in: Tribology Letters | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Realizing the efficiency benefits of low viscosity lubricants requires novel strategies to avoid failures resulting from increased boundary contact. Zirconium dioxide (ZrO2) nanoparticles (NPs) form protective tribofilms through tribosintering at lubricated contacts in pure hydrocarbon base oils, suggesting they hold promise for reducing boundary contact-induced failures. However, their tribological behavior alongside co-additives found in fully formulated oils has not been examined in depth. Here, the macroscopic tribological performance of dispersed ZrO2 NPs (1 wt% loading; 5 nm diameter nearly spherical ZrO2 tetragonal phase NPs with organic capping ligands for oil solubility) with and without the presence of co-additives found in fully formulated commercial gear oils was studied using a mini-traction machine (MTM). The results show that ZrO2 NPs reproducibly develop surface-bound ~ 100 nm thick tribofilms on both contacting surfaces under a wide range of rolling-sliding contact conditions, from 0 to 100% slide-to-roll ratio. Steady-state traction coefficient values of ZrO2 tribofilms formed alongside co-additives (0.10–0.11) do not substantially differ from ZrO2 tribofilms formed in neat polyalphaolefin base oils (0.10–0.13). However, there is improvement in the tribological performance of the contact, with at least a twofold reduction of wear of the steel. This behavior is proposed to be a result of cooperating mechanisms, where the extreme pressure additives adsorbed on the steel surfaces protect them against early adhesive wear, during the time that a protective ZrO2 tribofilm incorporating the co-additives forms on the steel surfaces, preventing further wear.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kakavas, I., Olver, A.V., Dini, D.: Hypoid gear vehicle axle efficiency. Tribol. Int. 101, 314–323 (2016)CrossRef Kakavas, I., Olver, A.V., Dini, D.: Hypoid gear vehicle axle efficiency. Tribol. Int. 101, 314–323 (2016)CrossRef
2.
Zurück zum Zitat Holmberg, K., Andersson, P., Nylund, N.O., Makela, K., Erdemir, A., Global, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014)CrossRef Holmberg, K., Andersson, P., Nylund, N.O., Makela, K., Erdemir, A., Global, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014)CrossRef
3.
Zurück zum Zitat International Energy Outlook, Tables A2 and A5. U.S. Energy Information Administration (2019) International Energy Outlook, Tables A2 and A5. U.S. Energy Information Administration (2019)
4.
Zurück zum Zitat Energy Flow Charts: Estimated World Energy Consumption in 2011. Lawrence Livermore National Laboratory (2011) Energy Flow Charts: Estimated World Energy Consumption in 2011. Lawrence Livermore National Laboratory (2011)
5.
Zurück zum Zitat Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, 4th edn. Elsevier Inc, Amsterdam (2014) Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, 4th edn. Elsevier Inc, Amsterdam (2014)
7.
Zurück zum Zitat Rudnick, L.R.: Lubricant Additives: Chemistry and Applications, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton (2009)CrossRef Rudnick, L.R.: Lubricant Additives: Chemistry and Applications, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton (2009)CrossRef
8.
Zurück zum Zitat Tuszynski, W., Michalczewski, R., Piekoszewski, W., Szczerek, M.: Modern automotive gear oils - classification, characteristics, market analysis, and some aspects of lubrication. In: Chiaberge, M. (ed.) New Trends and Developments in Automotive Industry. IntechOpen (2011). https://doi.org/10.5772/13014 Tuszynski, W., Michalczewski, R., Piekoszewski, W., Szczerek, M.: Modern automotive gear oils - classification, characteristics, market analysis, and some aspects of lubrication. In: Chiaberge, M. (ed.) New Trends and Developments in Automotive Industry. IntechOpen (2011). https://​doi.​org/​10.​5772/​13014
9.
Zurück zum Zitat Johnson, D.W., Hils, J.E.: Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants. 1, 132–148 (2013)CrossRef Johnson, D.W., Hils, J.E.: Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants. 1, 132–148 (2013)CrossRef
10.
Zurück zum Zitat Shahnazar, S., Bagheri, S., Hamid, S.B.A.: Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy. 41, 3153–3170 (2016)CrossRef Shahnazar, S., Bagheri, S., Hamid, S.B.A.: Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy. 41, 3153–3170 (2016)CrossRef
11.
Zurück zum Zitat Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)CrossRef Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)CrossRef
12.
Zurück zum Zitat Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P., Topchiev, A.V.: Synthesis and application of inorganic nanoparticles as lubricant components—a review. J. Nanopart. Res. 6, 273–284 (2004)CrossRef Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P., Topchiev, A.V.: Synthesis and application of inorganic nanoparticles as lubricant components—a review. J. Nanopart. Res. 6, 273–284 (2004)CrossRef
13.
Zurück zum Zitat Gulzar, M., Masjuki, H.H., Kalam, M.A., Varman, M., Zulkifli, N.W.M., Mufti, R.A., Zahid, R.: Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 18, 223 (2016)CrossRef Gulzar, M., Masjuki, H.H., Kalam, M.A., Varman, M., Zulkifli, N.W.M., Mufti, R.A., Zahid, R.: Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 18, 223 (2016)CrossRef
14.
Zurück zum Zitat Zhou, S., Garnweitner, G., Niederberger, M., Antonietti, M.: Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. Langmuir 23, 9178–9187 (2007)CrossRef Zhou, S., Garnweitner, G., Niederberger, M., Antonietti, M.: Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. Langmuir 23, 9178–9187 (2007)CrossRef
15.
Zurück zum Zitat Thrush, S.J., Comfort, A.S., Dusenbury, J.S., Xiong, Y., Qu, H., Han, X., Schall, J.D., Barber, G.C., Wang, X.: Stability, thermal conductivity, viscosity, and tribological characterization of zirconia nanofluids as a function of nanoparticle concentration. Tribol. Trans. 63, 68–76 (2019)CrossRef Thrush, S.J., Comfort, A.S., Dusenbury, J.S., Xiong, Y., Qu, H., Han, X., Schall, J.D., Barber, G.C., Wang, X.: Stability, thermal conductivity, viscosity, and tribological characterization of zirconia nanofluids as a function of nanoparticle concentration. Tribol. Trans. 63, 68–76 (2019)CrossRef
16.
Zurück zum Zitat Khare, H.S., Lahouji, I., Jackson, A., Feng, G., Chen, Z., Cooper, G.D., Carpick, R.W.: Nanoscale generation of robust solid films from liquid-dispersed nanoparticles via in situ atomic force microscopy: growth kinetics and nanomechanical properties. ACS Appl. Mater. Interfaces 10, 40335–40347 (2018)CrossRef Khare, H.S., Lahouji, I., Jackson, A., Feng, G., Chen, Z., Cooper, G.D., Carpick, R.W.: Nanoscale generation of robust solid films from liquid-dispersed nanoparticles via in situ atomic force microscopy: growth kinetics and nanomechanical properties. ACS Appl. Mater. Interfaces 10, 40335–40347 (2018)CrossRef
17.
Zurück zum Zitat Ma, S., Zheng, S., Cao, D., Guo, H.: Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology. 8, 468–472 (2010)CrossRef Ma, S., Zheng, S., Cao, D., Guo, H.: Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology. 8, 468–472 (2010)CrossRef
18.
Zurück zum Zitat Battez, A.H., Gonzalez, R., Viesca, J.L., Fernandez, J.E., Fernandez, J.M.D., Machado, A., Chou, R., Riba, J.: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265, 422–428 (2008)CrossRef Battez, A.H., Gonzalez, R., Viesca, J.L., Fernandez, J.E., Fernandez, J.M.D., Machado, A., Chou, R., Riba, J.: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265, 422–428 (2008)CrossRef
19.
Zurück zum Zitat Kato, H., Komai, K.: Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear 262, 36–41 (2007)CrossRef Kato, H., Komai, K.: Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear 262, 36–41 (2007)CrossRef
20.
Zurück zum Zitat Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)CrossRef Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)CrossRef
21.
Zurück zum Zitat Khare, H.S., Gosvami, N.N., Lahouji, I., Milne, Z.B., McClimon, J.B., Carpick, R.W.: Nanotribological printing: a nanoscale additive manufacturing method. Nano Lett. 18, 6756–6763 (2018)CrossRef Khare, H.S., Gosvami, N.N., Lahouji, I., Milne, Z.B., McClimon, J.B., Carpick, R.W.: Nanotribological printing: a nanoscale additive manufacturing method. Nano Lett. 18, 6756–6763 (2018)CrossRef
22.
Zurück zum Zitat Acharya, B., Avva, K.S., Thapa, B., Pardue, T.N., Krim, J.: Synergistic effect of nanodiamond and phosphate ester anti-wear additive blends. Lubricants. 6, 56 (2018)CrossRef Acharya, B., Avva, K.S., Thapa, B., Pardue, T.N., Krim, J.: Synergistic effect of nanodiamond and phosphate ester anti-wear additive blends. Lubricants. 6, 56 (2018)CrossRef
23.
Zurück zum Zitat Khajeh, A., Krim, J., Martini, A.: Synergistic effect of nanodiamonds on the adsorption of tricresyl phosphate on iron oxide surfaces. Appl. Phys. Lett. 114, 171602 (2019)CrossRef Khajeh, A., Krim, J., Martini, A.: Synergistic effect of nanodiamonds on the adsorption of tricresyl phosphate on iron oxide surfaces. Appl. Phys. Lett. 114, 171602 (2019)CrossRef
24.
Zurück zum Zitat Rensselar, J.V.: Extreme pressure/antiwear additives and friction modifiers. Tribol. Lubr. Technol. 74, 24–28 (2018) Rensselar, J.V.: Extreme pressure/antiwear additives and friction modifiers. Tribol. Lubr. Technol. 74, 24–28 (2018)
25.
Zurück zum Zitat Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243 (2006)CrossRef Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243 (2006)CrossRef
26.
Zurück zum Zitat de Barros-Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)CrossRef de Barros-Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)CrossRef
27.
Zurück zum Zitat Williams, Z.S.G., Wang, Y., Wiacek, R.J., Bai, X., Gou, L., Thomas, S.I., Xu, W., and Xu, J., Synthesis, capping and dispersion of nanocrystals. WO/2011/133228 (2011). Williams, Z.S.G., Wang, Y., Wiacek, R.J., Bai, X., Gou, L., Thomas, S.I., Xu, W., and Xu, J., Synthesis, capping and dispersion of nanocrystals. WO/2011/133228 (2011).
28.
Zurück zum Zitat Williams, Z.S.G., Wang, Y., Wiacek, R.J., Bai, X., Gou, L., Thomas, S.I., Xu, W., and Xu, J., Synthesis, capping and dispersion of nanocrystals. WO/2012/058271 (2012). Williams, Z.S.G., Wang, Y., Wiacek, R.J., Bai, X., Gou, L., Thomas, S.I., Xu, W., and Xu, J., Synthesis, capping and dispersion of nanocrystals. WO/2012/058271 (2012).
29.
Zurück zum Zitat Holder, C., Schaak, R.E.: Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019)CrossRef Holder, C., Schaak, R.E.: Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019)CrossRef
30.
Zurück zum Zitat Jerman, M., Qiao, Z., Mergel, D.: Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density. Appl. Opt. 44, 3006–3012 (2005)CrossRef Jerman, M., Qiao, Z., Mergel, D.: Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density. Appl. Opt. 44, 3006–3012 (2005)CrossRef
31.
Zurück zum Zitat Dawczyk, J., Morgan, N., Russo, J., Spikes, H.: Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 67, 34 (2019)CrossRef Dawczyk, J., Morgan, N., Russo, J., Spikes, H.: Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 67, 34 (2019)CrossRef
32.
Zurück zum Zitat Necas, D., Klapetek, P.: Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012) Necas, D., Klapetek, P.: Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012)
33.
Zurück zum Zitat Demas, N.G., Gould, B.J., Greco, A.C., Lorenzo-Martin, C., Erck, R.A., and Ajayi, O.O., Scuffing performance of low-viscosity gear oil containing ZrO2 nanocrystals. Proc. STLE/ASME Int. Jt. Tribol. Conf. (2019) Demas, N.G., Gould, B.J., Greco, A.C., Lorenzo-Martin, C., Erck, R.A., and Ajayi, O.O., Scuffing performance of low-viscosity gear oil containing ZrO2 nanocrystals. Proc. STLE/ASME Int. Jt. Tribol. Conf. (2019)
34.
Zurück zum Zitat Dai, W., Kheireddin, B., Gao, H., Kan, Y., Clearfield, A., Liang, H.: Formation of anti-wear tribofilms via alpha-ZrP nanoplatelet as lubricant additives. Lubricants. 4, 1–12 (2016)CrossRef Dai, W., Kheireddin, B., Gao, H., Kan, Y., Clearfield, A., Liang, H.: Formation of anti-wear tribofilms via alpha-ZrP nanoplatelet as lubricant additives. Lubricants. 4, 1–12 (2016)CrossRef
35.
Zurück zum Zitat Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 24 (2016)CrossRef Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 24 (2016)CrossRef
36.
Zurück zum Zitat Vadiraj, A., Manivasagam, G., Kamani, K., Sreenivasan, V.S.: Effect of nano oil additive proportions on friction and wear performance of automotive materials. Tribol. in Industry. 34, 3–10 (2012) Vadiraj, A., Manivasagam, G., Kamani, K., Sreenivasan, V.S.: Effect of nano oil additive proportions on friction and wear performance of automotive materials. Tribol. in Industry. 34, 3–10 (2012)
38.
Zurück zum Zitat Wang, A., Haskin, L.A., Lane, A.L., Wdowiak, T.J., Squyres, S.W., Wilson, R.J., Hovland, L.E., Manatt, K.S., Raouf, N., Smith, C.D.: Development of the mars microbeam raman spectrometer (MMRS). J. Geophys. Res. 108, 5005 (2003)CrossRef Wang, A., Haskin, L.A., Lane, A.L., Wdowiak, T.J., Squyres, S.W., Wilson, R.J., Hovland, L.E., Manatt, K.S., Raouf, N., Smith, C.D.: Development of the mars microbeam raman spectrometer (MMRS). J. Geophys. Res. 108, 5005 (2003)CrossRef
39.
Zurück zum Zitat Barberis, P., Merle-Mejean, T., Quintard, P.: On Raman spectroscopy of zirconium oxide films. J. Nucl. Mater. 246, 232–242 (1997)CrossRef Barberis, P., Merle-Mejean, T., Quintard, P.: On Raman spectroscopy of zirconium oxide films. J. Nucl. Mater. 246, 232–242 (1997)CrossRef
40.
Zurück zum Zitat Maczka, M., Lutz, E.T.G., Verbeek, H.J., Oskam, K., Meijerink, A., Hanuza, J., Stuivinga, M.: Spectroscopic studies of dynamically compacted monoclinic ZrO2. J. Phys. Chem. Solid. 60, 1909–1914 (1999)CrossRef Maczka, M., Lutz, E.T.G., Verbeek, H.J., Oskam, K., Meijerink, A., Hanuza, J., Stuivinga, M.: Spectroscopic studies of dynamically compacted monoclinic ZrO2. J. Phys. Chem. Solid. 60, 1909–1914 (1999)CrossRef
41.
Zurück zum Zitat He, X., Xiao, H., Choi, H., Diaz, A., Mosby, B., Clearfield, A., Liang, H.: Alpha-zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf. A 452, 32–38 (2014)CrossRef He, X., Xiao, H., Choi, H., Diaz, A., Mosby, B., Clearfield, A., Liang, H.: Alpha-zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf. A 452, 32–38 (2014)CrossRef
42.
Zurück zum Zitat Johnson, D.W., et al.: Application of Raman spectroscopy to lubricants, lubricated surfaces, and lubrication phenomena. Spectroscopy. 26, 1–4 (2011)CrossRef Johnson, D.W., et al.: Application of Raman spectroscopy to lubricants, lubricated surfaces, and lubrication phenomena. Spectroscopy. 26, 1–4 (2011)CrossRef
43.
Zurück zum Zitat Singh, H., Ramirez, G., Eryilmaz, O., Greco, A., Doll, G., Erdemir, A.: Fatigue resistant carbon coatings for rolling/sliding contacts. Tribol. Int. 98, 172–178 (2016)CrossRef Singh, H., Ramirez, G., Eryilmaz, O., Greco, A., Doll, G., Erdemir, A.: Fatigue resistant carbon coatings for rolling/sliding contacts. Tribol. Int. 98, 172–178 (2016)CrossRef
Metadaten
Titel
Cooperativity Between Zirconium Dioxide Nanoparticles and Extreme Pressure Additives in Forming Protective Tribofilms: Toward Enabling Low Viscosity Lubricants
verfasst von
Meagan B. Elinski
Parker LaMascus
Lei Zheng
Andrew Jackson
Robert J. Wiacek
Robert W. Carpick
Publikationsdatum
01.12.2020
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 4/2020
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-020-01346-1

Weitere Artikel der Ausgabe 4/2020

Tribology Letters 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.