Skip to main content
Erschienen in: Strength of Materials 1/2021

27.04.2021

Corrosion Behavior of Ni-Based Coatings Reinforced with Chromium Carbide Particles Deposited by Plasma Transferred Arc in a Hydrochloric Acid Solution

verfasst von: L. Fan, S. S. Liu, H. Y. Chen, H. L. Du

Erschienen in: Strength of Materials | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Ni-based coatings with different chromium carbide contents were deposited on H4140 steel by a plasma transferred arc process. The corrosion behavior of Ni-based chromium carbide coatings in a 0.5 mol/l HCl solution was studied by means of the potentiodynamic polarization curve, electrochemical impedance, and immersion corrosion test. The coatings were metallurgically bonded with the substrate. The addition of Cr3C2 particles resulted in more Cr-rich carbides in the coatings. In a 0.5 mol/l HCl solution, the four as-received coatings show active anodic dissolution due to the joint action of hydrogen and chlorine ions. With an increase in the Cr3C2 content, the corrosion potential of coatings shifts in the positive direction, the corrosion current density decreases, and the corrosive resistance of the coating is enhanced. The galvanic corrosion occurred between the Cr-rich carbides and the γ-Ni matrix phase, the coatings reinforced with chromium carbide particles showed preferential selective corrosion of the γ-Ni matrix phase. The cracks and pits are migration channels of the corrosion medium into the coating, causing a more serious corrosion damage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Fan, H. Y. Chen, Y. H. Dong, et al., “Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel,” Int. J. Miner. Metall. Mater., 25, 128–140 (2018).CrossRef L. Fan, H. Y. Chen, Y. H. Dong, et al., “Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel,” Int. J. Miner. Metall. Mater., 25, 128–140 (2018).CrossRef
2.
Zurück zum Zitat S. S. Liu, H. Y. Chen, X. Zhao, et al., “Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution,” J. Iron Steel Res. Int., 26, 191–199 (2019).CrossRef S. S. Liu, H. Y. Chen, X. Zhao, et al., “Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution,” J. Iron Steel Res. Int., 26, 191–199 (2019).CrossRef
3.
Zurück zum Zitat S. W. Huang, M. Samandi, and M. Brandt, “Abrasive wear performance and microstructure of laser clad WC/Ni layers,” Wear, 256, 1095–1105 (2004).CrossRef S. W. Huang, M. Samandi, and M. Brandt, “Abrasive wear performance and microstructure of laser clad WC/Ni layers,” Wear, 256, 1095–1105 (2004).CrossRef
4.
Zurück zum Zitat D. Bartkowski, A. Mùynarczak, A. Piasecki, et al., “Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding,” Opt. Laser Technol., 68, 191–201 (2015).CrossRef D. Bartkowski, A. Mùynarczak, A. Piasecki, et al., “Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding,” Opt. Laser Technol., 68, 191–201 (2015).CrossRef
5.
Zurück zum Zitat J. E. Cho, S. Y. Hwang, and K. Y. Kim, “Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment,” Surf. Coat. Technol., 200, 2653–2662 (2006).CrossRef J. E. Cho, S. Y. Hwang, and K. Y. Kim, “Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment,” Surf. Coat. Technol., 200, 2653–2662 (2006).CrossRef
6.
Zurück zum Zitat T. Liyanage, G. Fisher, and A. P. Gerlich, “Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW),” Surf. Coat. Technol., 205, 759–765 (2010).CrossRef T. Liyanage, G. Fisher, and A. P. Gerlich, “Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW),” Surf. Coat. Technol., 205, 759–765 (2010).CrossRef
7.
Zurück zum Zitat G. Q. Chen, X. S. Fu, Y. H. Wei, et al., “Microstructure and wear properties of nickel-based surfacing deposited by plasma transferred arc welding,” Surf. Coat. Technol., 228, 276–282 (2013).CrossRef G. Q. Chen, X. S. Fu, Y. H. Wei, et al., “Microstructure and wear properties of nickel-based surfacing deposited by plasma transferred arc welding,” Surf. Coat. Technol., 228, 276–282 (2013).CrossRef
8.
Zurück zum Zitat D. Kesavan and M. Kamaraj, “The microstructure and high temperature wear performance of a nickel base hardfaced coating,” Surf. Coat. Technol., 204, 4034–4043 (2010).CrossRef D. Kesavan and M. Kamaraj, “The microstructure and high temperature wear performance of a nickel base hardfaced coating,” Surf. Coat. Technol., 204, 4034–4043 (2010).CrossRef
9.
Zurück zum Zitat P. Xu, C. X. Lin, C. Y. Zhou, et al., “Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings,” Surf. Coat. Technol., 238, 9–14 (2014).CrossRef P. Xu, C. X. Lin, C. Y. Zhou, et al., “Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings,” Surf. Coat. Technol., 238, 9–14 (2014).CrossRef
10.
Zurück zum Zitat C. S. Ramesh and C. K. Srinivas, “Friction and wear behavior of laser-sintered iron-silicon carbide composites,” J. Mater. Process. Technol., 209, 5429–5436 (2009).CrossRef C. S. Ramesh and C. K. Srinivas, “Friction and wear behavior of laser-sintered iron-silicon carbide composites,” J. Mater. Process. Technol., 209, 5429–5436 (2009).CrossRef
11.
Zurück zum Zitat A. Surzhenkov, M. Antonov, D. Goljandin, et al., “High-temperature erosion of Fe-based coatings reinforced with cermet particles,” Surf. Eng., 32, 624–630 (2016).CrossRef A. Surzhenkov, M. Antonov, D. Goljandin, et al., “High-temperature erosion of Fe-based coatings reinforced with cermet particles,” Surf. Eng., 32, 624–630 (2016).CrossRef
12.
Zurück zum Zitat L. Fan, Y. H. Dong, H. Y. Chen, et al., “Wear properties of plasma transferred arc Fe-based coatings reinforced by spherical WC particles,” J. Wuhan Univ. Technol.-Mater. Sci. Ed., 34, 433–439 (2019).CrossRef L. Fan, Y. H. Dong, H. Y. Chen, et al., “Wear properties of plasma transferred arc Fe-based coatings reinforced by spherical WC particles,” J. Wuhan Univ. Technol.-Mater. Sci. Ed., 34, 433–439 (2019).CrossRef
13.
Zurück zum Zitat Z. F. Ni, Y. S. Sun, F. Xue, et al., “Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate,” Mater. Design, 32, 1462–1467 (2011).CrossRef Z. F. Ni, Y. S. Sun, F. Xue, et al., “Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate,” Mater. Design, 32, 1462–1467 (2011).CrossRef
14.
Zurück zum Zitat D. W. Zhang, T. C. Lei, and F. J. Li, “Laser cladding of stainless steel with Ni-Cr3C2 for improved wear performance,” Wear, 251, 1372–1376 (2001).CrossRef D. W. Zhang, T. C. Lei, and F. J. Li, “Laser cladding of stainless steel with Ni-Cr3C2 for improved wear performance,” Wear, 251, 1372–1376 (2001).CrossRef
15.
Zurück zum Zitat B. Q. Wang and Z. R. Shui, “The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders,” Wear, 253, 550–557 (2002).CrossRef B. Q. Wang and Z. R. Shui, “The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders,” Wear, 253, 550–557 (2002).CrossRef
16.
Zurück zum Zitat M. A. Zavareh, A. A. D. Sarhan, B. B. A. Razak, et al., “The tribological and electrochemical behavior of HVOF-sprayed Cr3C2-NiCr ceramic coating on carbon steel,” Ceram. Int., 41, 5387–5396 (2015).CrossRef M. A. Zavareh, A. A. D. Sarhan, B. B. A. Razak, et al., “The tribological and electrochemical behavior of HVOF-sprayed Cr3C2-NiCr ceramic coating on carbon steel,” Ceram. Int., 41, 5387–5396 (2015).CrossRef
17.
Zurück zum Zitat C. O. A. Olsson and D. Landolt, “Passive films on stainless steels-chemistry, structure and growth,” Electrochim. Acta, 48, 1093–1104 (2003).CrossRef C. O. A. Olsson and D. Landolt, “Passive films on stainless steels-chemistry, structure and growth,” Electrochim. Acta, 48, 1093–1104 (2003).CrossRef
18.
Zurück zum Zitat Y. Wang, S. L. Jiang , Y. G. Zheng, et al., “Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions,” Corros. Sci., 63, 159–173 (2012).CrossRef Y. Wang, S. L. Jiang , Y. G. Zheng, et al., “Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions,” Corros. Sci., 63, 159–173 (2012).CrossRef
19.
Zurück zum Zitat G. Hu, H. Meng, and J. Liu, “Microstructure and corrosion resistance of induction melted Fe-based alloy coating,” Surf. Coat. Technol., 251, 300–306 (2014).CrossRef G. Hu, H. Meng, and J. Liu, “Microstructure and corrosion resistance of induction melted Fe-based alloy coating,” Surf. Coat. Technol., 251, 300–306 (2014).CrossRef
20.
Zurück zum Zitat S. F. Guo, F. S. Pan, H. J. Zhang, et al., “Fe-based amorphous coating for corrosion protection of magnesium alloy,” Mater. Design, 108, 624–631 (2016).CrossRef S. F. Guo, F. S. Pan, H. J. Zhang, et al., “Fe-based amorphous coating for corrosion protection of magnesium alloy,” Mater. Design, 108, 624–631 (2016).CrossRef
21.
Zurück zum Zitat S. Katakam, V. Kumar, S. Santhanakrishnan, et al., “Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion,” J. Alloys Compd., 604, 266–272 (2014).CrossRef S. Katakam, V. Kumar, S. Santhanakrishnan, et al., “Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion,” J. Alloys Compd., 604, 266–272 (2014).CrossRef
22.
Zurück zum Zitat A. Davoodi, M. Pakshir, M. Babaiee, et al., “A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media,” Corros. Sci., 53, 399–408 (2011).CrossRef A. Davoodi, M. Pakshir, M. Babaiee, et al., “A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media,” Corros. Sci., 53, 399–408 (2011).CrossRef
23.
Zurück zum Zitat Q. L. Wu, W. G. Li, and N. Zhong, “Corrosion behavior of TiC particle-reinforced 304 stainless steel,” Corros. Sci., 53, 4258–4264 (2011).CrossRef Q. L. Wu, W. G. Li, and N. Zhong, “Corrosion behavior of TiC particle-reinforced 304 stainless steel,” Corros. Sci., 53, 4258–4264 (2011).CrossRef
24.
Zurück zum Zitat M. M. Verdian, K. Raeissi, and M. Salehi, “Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution,” Corros. Sci., 52, 1052–1059 (2010).CrossRef M. M. Verdian, K. Raeissi, and M. Salehi, “Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution,” Corros. Sci., 52, 1052–1059 (2010).CrossRef
25.
Zurück zum Zitat Y. Huang and X. Zeng, “Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding,” Appl. Surf. Sci., 256, 5985–5992 (2010).CrossRef Y. Huang and X. Zeng, “Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding,” Appl. Surf. Sci., 256, 5985–5992 (2010).CrossRef
26.
Zurück zum Zitat Y. H. Dong, L. Fan, H. Y. Chen, et al., “Corrosion behavior of plasma transferred arc Fe-based coating reinforced by spherical tungsten carbide in hydrochloric acid solutions,” J. Wuhan Univ. Technol.-Mater. Sci. Ed., 35, 299–309 (2020).CrossRef Y. H. Dong, L. Fan, H. Y. Chen, et al., “Corrosion behavior of plasma transferred arc Fe-based coating reinforced by spherical tungsten carbide in hydrochloric acid solutions,” J. Wuhan Univ. Technol.-Mater. Sci. Ed., 35, 299–309 (2020).CrossRef
27.
Zurück zum Zitat J. Wang, L. Li, and W. Tao, “Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition,” Opt. Laser Technol., 82, 170–182 (2016).CrossRef J. Wang, L. Li, and W. Tao, “Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition,” Opt. Laser Technol., 82, 170–182 (2016).CrossRef
Metadaten
Titel
Corrosion Behavior of Ni-Based Coatings Reinforced with Chromium Carbide Particles Deposited by Plasma Transferred Arc in a Hydrochloric Acid Solution
verfasst von
L. Fan
S. S. Liu
H. Y. Chen
H. L. Du
Publikationsdatum
27.04.2021
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2021
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00266-2

Weitere Artikel der Ausgabe 1/2021

Strength of Materials 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.